搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

0.14 THz双环超材料慢波结构表面波振荡器数值研究

郭伟杰 陈再高 蔡利兵 王光强 程国新

引用本文:
Citation:

0.14 THz双环超材料慢波结构表面波振荡器数值研究

郭伟杰, 陈再高, 蔡利兵, 王光强, 程国新

Numerical studies on a 0.14 THz coaxial surface wave oscillator with double-ring metamaterial slow wave structure

Guo Wei-Jie, Chen Zai-Gao, Cai Li-Bing, Wang Guang-Qiang, Cheng Guo-Xin
PDF
导出引用
  • 本文研究了一种太赫兹波段双环超材料慢波结构, 并具有同轴引出结构的相对论过模表面波振荡器. 设计了超材料同轴过模慢波结构; 通过色散特性, 进行了模式选择和过模结构电子束电参数和几何参数的设计; 根据超材料同轴慢波结构的特点, 设计了具有同轴引出结构的末端同轴输出段. 粒子模拟结果表明, 在电子束电压为600 kV和电流为1.0 kA, 引导磁场为2.0 T 时, 同轴超材料慢波结构过模表面波振荡器输出稳定单频的0.141 THz电磁波, 峰值功率为316.8 MW.
    This paper presents a relativistic coaxial overmoded surface wave oscillator (SWO) working at the terahertz band in the double-ring metamaterial slow wave structure (SWS). A relativistic electron beam passes through the SWS between the inner and outer rings. A coaxial overmoded SWS made up of metal metamaterial is designed to generate the high-power terahertz wave by increasing the beam-wave interaction efficiency and enlarging the transverse size of the terahertz device. It consists of double rings periodically arrayed along the z-direction, and a coaxial conductor with a radius of 2.4 mm. By its dispersive relation the proposed device is studied, from which we choose the 0.14 THz as the operating frequency of the device. Then the parameters of the geometric structure and the electron beam are optimized; the transitional section for extracting the terahertz signal is designed of the largest propagation coefficient. Particle simulation code UNIPIC is employed to verify the initial expectation and potential advantages. When the beam voltage and current are increasing, the operating frequency of the device remains almost constant, and this is the typical characteristic of the SWO. Particle simulation results show that the coaxial inner conductor has a stable operating mode of double-ring metamaterial SWS and can increase the beam-wave interaction efficiency of the SWO at the terahertz band. For a guiding magnetic field of 2.0 T, with the electron beam of 600 kV and a current of 1.0 kA, a 0.141 THz wave output power of 316.8 MW is obtained.
    [1]

    Siegel P H 2002 IEEE Trans. Microwave Theory Tech. 50 910

    [2]

    Booske J H 2008 Phys. Plasmas 15 055502

    [3]

    Booske J H, Dobbs R J, Joye C D, Kory C L, Neil G R, Park G, Park J, Temkin R J 2011 IEEE Trans. Terahertz Sci. Technol 1 54

    [4]

    Zhang H, Wang J G, Tong C J, Li X Z, Wang G Q 2009 Phys. Plasmas 16 123104

    [5]

    Li X Z, Wang J G, Song Z M, Chen C H, Sun J, Zhang X W, Zhang Y C 2012 Phys. Plasmas 19 083111

    [6]

    Zhang H, Wang J G 2009 Proceedings of 2009 IEEE International Conference on Ultra-Wideband Vancouver, Canada, September 2009 p55

    [7]

    Wang G Q, Wang J G, Li X Z, Fan R Y, Wang X Z, Wang X F, Tong C J 2010 Acta Phys. Sin. 59 8459 (in Chinese) [王光强, 王建国, 李小泽, 范如玉, 王行舟, 王雪锋, 童长江 2010 59 8459]

    [8]

    Wang X F, Wang J G, Wang G Q, Li S, Xiong Z F 2014 Chin. Phys. B 23 058701

    [9]

    Wang G Q, Wang J G, Tong C J, Li X Z, Wang X F, Li S, Lu X C 2013 Phys. Plasmas 20 043105

    [10]

    Li X Z, Wang J G, Sun J, Song Z M, Ye H, Zhang Y C, Zhang L J, Zhang L 2013 IEEE Trans. Electron Dev. 60 2931

    [11]

    Zhang H, Wang J G, Tong C J 2008 Proceedings of 2008 Asia Pacific Microwave Conference, Hong Kong, China, December 2008 p1

    [12]

    Wang Y, Chen Z G, Lei Y A 2013 Acta Phys. Sin. 62 120703 (in Chinese) [王宇, 陈再高, 雷奕安 2013 62 120703]

    [13]

    Chen Z G, Wang J G, Wang G Q, Li S, Wang Y, Zhang D H, Qiao H L 2014 Acta Phys. Sin. 63 110703 (in Chinese) [陈再高, 王建国, 王光强, 李爽, 王玥, 张殿辉, 乔海亮 2014 63 110703]

    [14]

    Zhang H, Wang J G 2008 Proceedings of 11th IEEE Singapore International Conference on Communication Systems, Guangzhou, China, November 2008 p1461

    [15]

    Chen Z G, Wang J G, Wang Y, Qiao H L, Zhang D H, Guo W J 2013 Phys. Plasmas 20 113103

    [16]

    Wang J, Zhang D, Liu C, Li Y, Wang Y, Wang H, Qiao H, Li X 2009 Phys. Plasmas 16 033108

    [17]

    Wang J, Chen Z, Wang Y, Zhang D, Liu C, Li Y, Wang H, Qiao H, Fu M, Yuan Y 2010 Phys. Plasmas 17 073107

    [18]

    Pendry J, Holden A, Stewart W, Youngs I 1996 Phys. Rev. Lett. 76 4773

    [19]

    Schamiloglu E Proc. 4th Euro Asian Pulsed Power Conference/BEAMS Conference O5B1, Karlsruhe, Germany 2014

    [20]

    Wang J G, Wang Y, Zhang D H 2006 IEEE Trans. Plasma Sci. 34 681

  • [1]

    Siegel P H 2002 IEEE Trans. Microwave Theory Tech. 50 910

    [2]

    Booske J H 2008 Phys. Plasmas 15 055502

    [3]

    Booske J H, Dobbs R J, Joye C D, Kory C L, Neil G R, Park G, Park J, Temkin R J 2011 IEEE Trans. Terahertz Sci. Technol 1 54

    [4]

    Zhang H, Wang J G, Tong C J, Li X Z, Wang G Q 2009 Phys. Plasmas 16 123104

    [5]

    Li X Z, Wang J G, Song Z M, Chen C H, Sun J, Zhang X W, Zhang Y C 2012 Phys. Plasmas 19 083111

    [6]

    Zhang H, Wang J G 2009 Proceedings of 2009 IEEE International Conference on Ultra-Wideband Vancouver, Canada, September 2009 p55

    [7]

    Wang G Q, Wang J G, Li X Z, Fan R Y, Wang X Z, Wang X F, Tong C J 2010 Acta Phys. Sin. 59 8459 (in Chinese) [王光强, 王建国, 李小泽, 范如玉, 王行舟, 王雪锋, 童长江 2010 59 8459]

    [8]

    Wang X F, Wang J G, Wang G Q, Li S, Xiong Z F 2014 Chin. Phys. B 23 058701

    [9]

    Wang G Q, Wang J G, Tong C J, Li X Z, Wang X F, Li S, Lu X C 2013 Phys. Plasmas 20 043105

    [10]

    Li X Z, Wang J G, Sun J, Song Z M, Ye H, Zhang Y C, Zhang L J, Zhang L 2013 IEEE Trans. Electron Dev. 60 2931

    [11]

    Zhang H, Wang J G, Tong C J 2008 Proceedings of 2008 Asia Pacific Microwave Conference, Hong Kong, China, December 2008 p1

    [12]

    Wang Y, Chen Z G, Lei Y A 2013 Acta Phys. Sin. 62 120703 (in Chinese) [王宇, 陈再高, 雷奕安 2013 62 120703]

    [13]

    Chen Z G, Wang J G, Wang G Q, Li S, Wang Y, Zhang D H, Qiao H L 2014 Acta Phys. Sin. 63 110703 (in Chinese) [陈再高, 王建国, 王光强, 李爽, 王玥, 张殿辉, 乔海亮 2014 63 110703]

    [14]

    Zhang H, Wang J G 2008 Proceedings of 11th IEEE Singapore International Conference on Communication Systems, Guangzhou, China, November 2008 p1461

    [15]

    Chen Z G, Wang J G, Wang Y, Qiao H L, Zhang D H, Guo W J 2013 Phys. Plasmas 20 113103

    [16]

    Wang J, Zhang D, Liu C, Li Y, Wang Y, Wang H, Qiao H, Li X 2009 Phys. Plasmas 16 033108

    [17]

    Wang J, Chen Z, Wang Y, Zhang D, Liu C, Li Y, Wang H, Qiao H, Fu M, Yuan Y 2010 Phys. Plasmas 17 073107

    [18]

    Pendry J, Holden A, Stewart W, Youngs I 1996 Phys. Rev. Lett. 76 4773

    [19]

    Schamiloglu E Proc. 4th Euro Asian Pulsed Power Conference/BEAMS Conference O5B1, Karlsruhe, Germany 2014

    [20]

    Wang J G, Wang Y, Zhang D H 2006 IEEE Trans. Plasma Sci. 34 681

  • [1] 黄若彤, 李九生. 太赫兹多波束调控反射编码超表面.  , 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [2] 杨东如, 程用志, 罗辉, 陈浮, 李享成. 基于双开缝环结构的半反射和半透射超宽带超薄双偏振太赫兹超表面.  , 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [3] 葛宏义, 李丽, 蒋玉英, 李广明, 王飞, 吕明, 张元, 李智. 基于双开口金属环的太赫兹超材料吸波体传感器.  , 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [4] 陈闻博, 陈鹤鸣. 基于超材料复合结构的太赫兹液晶移相器.  , 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [5] 庞慧中, 王鑫, 王俊林, 王宗利, 刘苏雅拉图, 田虎强. 双频带太赫兹超材料吸波体传感器传感特性.  , 2021, 70(16): 168101. doi: 10.7498/aps.70.20210062
    [6] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器.  , 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [7] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束.  , 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [8] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面.  , 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [9] 孙雅丽, 张冶文, Stephane Hole, 马朋, 郭聪, 郑飞虎, 安振连. 同轴结构中压力波法测量空间电荷分布的物理模型研究.  , 2017, 66(12): 127701. doi: 10.7498/aps.66.127701
    [10] 杨磊, 范飞, 陈猛, 张选洲, 常胜江. 多功能太赫兹超表面偏振控制器.  , 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [11] 张玉萍, 李彤彤, 吕欢欢, 黄晓燕, 张会云. 工字形太赫兹超材料吸波体的传感特性研究.  , 2015, 64(11): 117801. doi: 10.7498/aps.64.117801
    [12] 王光强, 王建国, 李爽, 王雪锋, 陆希成, 宋志敏. 0.34 THz大功率过模表面波振荡器研究.  , 2015, 64(5): 050703. doi: 10.7498/aps.64.050703
    [13] 赵文娟, 陈再高, 郭伟杰. 慢波结构爆炸发射对高功率太赫兹表面波振荡器的影响.  , 2015, 64(15): 150702. doi: 10.7498/aps.64.150702
    [14] 陈再高, 王建国, 王玥, 张殿辉, 乔海亮. 欧姆损耗对太赫兹频段同轴表面波振荡器的影响.  , 2015, 64(7): 070703. doi: 10.7498/aps.64.070703
    [15] 陈再高, 王建国, 王光强, 李爽, 王玥, 张殿辉, 乔海亮. 0.14太赫兹同轴表面波振荡器研究.  , 2014, 63(11): 110703. doi: 10.7498/aps.63.110703
    [16] 戴雨涵, 陈小浪, 赵强, 张继华, 陈宏伟, 杨传仁. 太赫兹波段谐振频率可调的开口谐振环结构.  , 2013, 62(6): 064101. doi: 10.7498/aps.62.064101
    [17] 王光强, 王建国, 李爽, 王雪锋, 童长江, 陆希成, 郭伟杰. 0.14THz过模表面波振荡器的模式分析.  , 2013, 62(15): 150701. doi: 10.7498/aps.62.150701
    [18] 李小泽, 滕雁, 王建国, 宋志敏, 张黎军, 张余川, 叶虎. 过模结构表面波振荡器模式选择.  , 2013, 62(8): 084103. doi: 10.7498/aps.62.084103
    [19] 李爽, 王建国, 童长江, 王光强, 陆希成, 王雪锋. 大功率0.34 THz辐射源中慢波结构的优化设计.  , 2013, 62(12): 120703. doi: 10.7498/aps.62.120703
    [20] 王玥, 贺训军, 吴昱明, 吴群, 梅金硕, 李龙威, 杨福杏, 赵拓, 李乐伟. 碳纳米管薄膜周期结构的太赫兹表面等离子波特性研究.  , 2011, 60(10): 107301. doi: 10.7498/aps.60.107301
计量
  • 文章访问数:  7144
  • PDF下载量:  245
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-24
  • 修回日期:  2014-10-27
  • 刊出日期:  2015-04-05

/

返回文章
返回
Baidu
map