-
This paper presents a relativistic coaxial overmoded surface wave oscillator (SWO) working at the terahertz band in the double-ring metamaterial slow wave structure (SWS). A relativistic electron beam passes through the SWS between the inner and outer rings. A coaxial overmoded SWS made up of metal metamaterial is designed to generate the high-power terahertz wave by increasing the beam-wave interaction efficiency and enlarging the transverse size of the terahertz device. It consists of double rings periodically arrayed along the z-direction, and a coaxial conductor with a radius of 2.4 mm. By its dispersive relation the proposed device is studied, from which we choose the 0.14 THz as the operating frequency of the device. Then the parameters of the geometric structure and the electron beam are optimized; the transitional section for extracting the terahertz signal is designed of the largest propagation coefficient. Particle simulation code UNIPIC is employed to verify the initial expectation and potential advantages. When the beam voltage and current are increasing, the operating frequency of the device remains almost constant, and this is the typical characteristic of the SWO. Particle simulation results show that the coaxial inner conductor has a stable operating mode of double-ring metamaterial SWS and can increase the beam-wave interaction efficiency of the SWO at the terahertz band. For a guiding magnetic field of 2.0 T, with the electron beam of 600 kV and a current of 1.0 kA, a 0.141 THz wave output power of 316.8 MW is obtained.
-
Keywords:
- terahertz /
- metamaterial slow-wave structure /
- surface-wave oscillator /
- coaxial structure
[1] Siegel P H 2002 IEEE Trans. Microwave Theory Tech. 50 910
[2] Booske J H 2008 Phys. Plasmas 15 055502
[3] Booske J H, Dobbs R J, Joye C D, Kory C L, Neil G R, Park G, Park J, Temkin R J 2011 IEEE Trans. Terahertz Sci. Technol 1 54
[4] Zhang H, Wang J G, Tong C J, Li X Z, Wang G Q 2009 Phys. Plasmas 16 123104
[5] Li X Z, Wang J G, Song Z M, Chen C H, Sun J, Zhang X W, Zhang Y C 2012 Phys. Plasmas 19 083111
[6] Zhang H, Wang J G 2009 Proceedings of 2009 IEEE International Conference on Ultra-Wideband Vancouver, Canada, September 2009 p55
[7] Wang G Q, Wang J G, Li X Z, Fan R Y, Wang X Z, Wang X F, Tong C J 2010 Acta Phys. Sin. 59 8459 (in Chinese) [王光强, 王建国, 李小泽, 范如玉, 王行舟, 王雪锋, 童长江 2010 59 8459]
[8] Wang X F, Wang J G, Wang G Q, Li S, Xiong Z F 2014 Chin. Phys. B 23 058701
[9] Wang G Q, Wang J G, Tong C J, Li X Z, Wang X F, Li S, Lu X C 2013 Phys. Plasmas 20 043105
[10] Li X Z, Wang J G, Sun J, Song Z M, Ye H, Zhang Y C, Zhang L J, Zhang L 2013 IEEE Trans. Electron Dev. 60 2931
[11] Zhang H, Wang J G, Tong C J 2008 Proceedings of 2008 Asia Pacific Microwave Conference, Hong Kong, China, December 2008 p1
[12] Wang Y, Chen Z G, Lei Y A 2013 Acta Phys. Sin. 62 120703 (in Chinese) [王宇, 陈再高, 雷奕安 2013 62 120703]
[13] Chen Z G, Wang J G, Wang G Q, Li S, Wang Y, Zhang D H, Qiao H L 2014 Acta Phys. Sin. 63 110703 (in Chinese) [陈再高, 王建国, 王光强, 李爽, 王玥, 张殿辉, 乔海亮 2014 63 110703]
[14] Zhang H, Wang J G 2008 Proceedings of 11th IEEE Singapore International Conference on Communication Systems, Guangzhou, China, November 2008 p1461
[15] Chen Z G, Wang J G, Wang Y, Qiao H L, Zhang D H, Guo W J 2013 Phys. Plasmas 20 113103
[16] Wang J, Zhang D, Liu C, Li Y, Wang Y, Wang H, Qiao H, Li X 2009 Phys. Plasmas 16 033108
[17] Wang J, Chen Z, Wang Y, Zhang D, Liu C, Li Y, Wang H, Qiao H, Fu M, Yuan Y 2010 Phys. Plasmas 17 073107
[18] Pendry J, Holden A, Stewart W, Youngs I 1996 Phys. Rev. Lett. 76 4773
[19] Schamiloglu E Proc. 4th Euro Asian Pulsed Power Conference/BEAMS Conference O5B1, Karlsruhe, Germany 2014
[20] Wang J G, Wang Y, Zhang D H 2006 IEEE Trans. Plasma Sci. 34 681
-
[1] Siegel P H 2002 IEEE Trans. Microwave Theory Tech. 50 910
[2] Booske J H 2008 Phys. Plasmas 15 055502
[3] Booske J H, Dobbs R J, Joye C D, Kory C L, Neil G R, Park G, Park J, Temkin R J 2011 IEEE Trans. Terahertz Sci. Technol 1 54
[4] Zhang H, Wang J G, Tong C J, Li X Z, Wang G Q 2009 Phys. Plasmas 16 123104
[5] Li X Z, Wang J G, Song Z M, Chen C H, Sun J, Zhang X W, Zhang Y C 2012 Phys. Plasmas 19 083111
[6] Zhang H, Wang J G 2009 Proceedings of 2009 IEEE International Conference on Ultra-Wideband Vancouver, Canada, September 2009 p55
[7] Wang G Q, Wang J G, Li X Z, Fan R Y, Wang X Z, Wang X F, Tong C J 2010 Acta Phys. Sin. 59 8459 (in Chinese) [王光强, 王建国, 李小泽, 范如玉, 王行舟, 王雪锋, 童长江 2010 59 8459]
[8] Wang X F, Wang J G, Wang G Q, Li S, Xiong Z F 2014 Chin. Phys. B 23 058701
[9] Wang G Q, Wang J G, Tong C J, Li X Z, Wang X F, Li S, Lu X C 2013 Phys. Plasmas 20 043105
[10] Li X Z, Wang J G, Sun J, Song Z M, Ye H, Zhang Y C, Zhang L J, Zhang L 2013 IEEE Trans. Electron Dev. 60 2931
[11] Zhang H, Wang J G, Tong C J 2008 Proceedings of 2008 Asia Pacific Microwave Conference, Hong Kong, China, December 2008 p1
[12] Wang Y, Chen Z G, Lei Y A 2013 Acta Phys. Sin. 62 120703 (in Chinese) [王宇, 陈再高, 雷奕安 2013 62 120703]
[13] Chen Z G, Wang J G, Wang G Q, Li S, Wang Y, Zhang D H, Qiao H L 2014 Acta Phys. Sin. 63 110703 (in Chinese) [陈再高, 王建国, 王光强, 李爽, 王玥, 张殿辉, 乔海亮 2014 63 110703]
[14] Zhang H, Wang J G 2008 Proceedings of 11th IEEE Singapore International Conference on Communication Systems, Guangzhou, China, November 2008 p1461
[15] Chen Z G, Wang J G, Wang Y, Qiao H L, Zhang D H, Guo W J 2013 Phys. Plasmas 20 113103
[16] Wang J, Zhang D, Liu C, Li Y, Wang Y, Wang H, Qiao H, Li X 2009 Phys. Plasmas 16 033108
[17] Wang J, Chen Z, Wang Y, Zhang D, Liu C, Li Y, Wang H, Qiao H, Fu M, Yuan Y 2010 Phys. Plasmas 17 073107
[18] Pendry J, Holden A, Stewart W, Youngs I 1996 Phys. Rev. Lett. 76 4773
[19] Schamiloglu E Proc. 4th Euro Asian Pulsed Power Conference/BEAMS Conference O5B1, Karlsruhe, Germany 2014
[20] Wang J G, Wang Y, Zhang D H 2006 IEEE Trans. Plasma Sci. 34 681
计量
- 文章访问数: 7144
- PDF下载量: 245
- 被引次数: 0