-
采用理论分析和实验验证相结合的方法, 研究了0.14 THz过模表面波振荡器(过模比D/3)中太赫兹波模式成分的分布. 首先针对具有圆周对称结构的过模切连科夫器件, 建立了用于模式分析的纵向场分解法. 接着基于2.5维PIC(Particle-in-cell)软件的电场模拟结果, 采用该方法对0.14 THz表面波振荡器的模式进行了详尽的理论分析. 结果表明, 器件中不同结构区域的太赫兹波模式成分不同, 相互间存在模式转换, 输出模式以TM02和TM03模为主, 并伴有少量TM04模. 最后利用图像显示法获取了0.14 THz表面波振荡器的近场辐射能量分布, 与由模式分析结果得到的理论分布符合的较好, 证明了纵向场分解法用于模式分析的可行性和结果的正确性.Mode analysis of the terahertz wave generated by 0.14 THz overmoded surface wave oscillator (SWO) (overmoded ratio D/ 3) is theoretically accomplished and experimentally validated. At first, longitudinal field-expansion method for mode analysis is established aiming at overmoded Cherenkov devices. Then this method is used to analyze the theoretical mode content of 0.14 THz SWO in detail based on the simulation results of electric field extracted from a 2.5-dimensional PIC (particle-in-cell) code. Results show that the mode content of terahertz wave in different characteristic regions of the oscillator is varied due to the mode conversion, and it is dominated by TM02 and TM03 modes accompanied by a small quantity of TM04 mode at the output. Finally, the energy distribution in the near-field radiation of 0.14 THz SWO is obtained by image-displaying method. The experimental result is reasonably in accord with the theoretical distribution calculated from the mode analysis results under experimental conditions, testifying the feasibility of longitudinal field-expansion method for the mode analysis and the correctness of its results.
-
Keywords:
- overmoded /
- surface wave oscillator /
- mode analysis /
- field-expansion method
[1] Benford J, Swegle J A, Schamiloglu E 2007 High Power Microwaves (2nd Ed.) (New York: Taylor and Francis) p321–p370
[2] Bratman V L, Denisov G G, Ofitserov M M, Korovin S D, Polevin S D, Rostov V V 1987 IEEE Trans. Plasma Sci. PS-15 2
[3] Booske J H 2008 Phys. Plasma 15 055502
[4] Wu Y, Jin X, Ma Q S, Li Z H, Ju B Q, Su C, Xu Z, Tang C X 2011 Acta Phys. Sin. 60 084101 (in Chinese) [吴洋, 金晓, 马乔生, 李正红, 鞠炳全, 苏昶, 许州, 唐传祥 2011 60 084101]
[5] Min S H, Kwon O J, Sattorov M A, So J K, Park S H, Baek I K, Choi D H, Shin Y M, Park G S 2011 Proceedings of 36th International conference on IRMMW-THz Houston, USA, October 2–7, 2011 p1
[6] David K A, Yuval C, Susanne M M, Alan B, Baruch L, Thomas M A, William W D 1998 IEEE Trans. Plasma Sci. 26 591
[7] Tong C J, Li X Z, Wang J G, Wang X Z, Wang G Q 2009 Proc. SPIE 7385 73851
[8] Li X Z, Wang J G, Song Z M, Chen C H, Sun J, Zhang X W, Zhang Y C 2012 Phys. Plasmas 19 083111
[9] Chen H B, Zhou C M, Hu L L, Ma G W, Xu D M, Song R, Jin X 2010 High power Laser and Particle Beams 22 865 (in Chinese) [陈洪斌, 周传明, 胡林林, 马国武, 许冬明, 宋睿, 金晓 2010 强激光与粒子束 22 865]
[10] Zhang J, Zhong H H, Ling L 2004 IEEE Trans. Plasma Sci. 32 2236
[11] Zhu J, Shu T, Zhang J, Li G L, Zhang Z H 2010 Phys. Plasmas 17 083104
[12] Wang G Q, Wang J G, Li X Z, Fan R Y, Wang X Z, Wang X F, Tong C J 2010 Acta Phys. Sin. 59 8459 (in Chinese) [王光强, 王建国, 李小泽, 范如玉, 王行舟, 王雪锋, 童长江 2010 59 8459]
[13] Booske J H, Dobbs R J, Joye C D, Kory C L, Neil G R, Park G S, Park J, Temkin R J 2011 IEEE Trans. Terahertz Sci. Tech. 1 54
[14] Wang J G, Zhang D H, Liu C L, Li Y D, Wang Y, Wang H G, Qiao H L, Li X Z 2009 Phys. Plasmas 16 033108
[15] Wang W X, Yue L N, Zhao G Q, Gong Y B 2005 J. Infrared Milli. Terahz. Waves 26 147
[16] Wang G Q, Li X Z, Wang J G, Wang X Z, Tong C J 2009 Proc. SPIE 7385 73850Y
[17] Zhu X Q, Wang J G, Wang Y, Wang G Q, Chen Z G 2011 High power Laser and Particle Beams 23 2157 (in Chinese) [朱湘琴, 王建国, 王玥, 王光强, 陈再高 2011 强激光与粒子束 23 2157]
-
[1] Benford J, Swegle J A, Schamiloglu E 2007 High Power Microwaves (2nd Ed.) (New York: Taylor and Francis) p321–p370
[2] Bratman V L, Denisov G G, Ofitserov M M, Korovin S D, Polevin S D, Rostov V V 1987 IEEE Trans. Plasma Sci. PS-15 2
[3] Booske J H 2008 Phys. Plasma 15 055502
[4] Wu Y, Jin X, Ma Q S, Li Z H, Ju B Q, Su C, Xu Z, Tang C X 2011 Acta Phys. Sin. 60 084101 (in Chinese) [吴洋, 金晓, 马乔生, 李正红, 鞠炳全, 苏昶, 许州, 唐传祥 2011 60 084101]
[5] Min S H, Kwon O J, Sattorov M A, So J K, Park S H, Baek I K, Choi D H, Shin Y M, Park G S 2011 Proceedings of 36th International conference on IRMMW-THz Houston, USA, October 2–7, 2011 p1
[6] David K A, Yuval C, Susanne M M, Alan B, Baruch L, Thomas M A, William W D 1998 IEEE Trans. Plasma Sci. 26 591
[7] Tong C J, Li X Z, Wang J G, Wang X Z, Wang G Q 2009 Proc. SPIE 7385 73851
[8] Li X Z, Wang J G, Song Z M, Chen C H, Sun J, Zhang X W, Zhang Y C 2012 Phys. Plasmas 19 083111
[9] Chen H B, Zhou C M, Hu L L, Ma G W, Xu D M, Song R, Jin X 2010 High power Laser and Particle Beams 22 865 (in Chinese) [陈洪斌, 周传明, 胡林林, 马国武, 许冬明, 宋睿, 金晓 2010 强激光与粒子束 22 865]
[10] Zhang J, Zhong H H, Ling L 2004 IEEE Trans. Plasma Sci. 32 2236
[11] Zhu J, Shu T, Zhang J, Li G L, Zhang Z H 2010 Phys. Plasmas 17 083104
[12] Wang G Q, Wang J G, Li X Z, Fan R Y, Wang X Z, Wang X F, Tong C J 2010 Acta Phys. Sin. 59 8459 (in Chinese) [王光强, 王建国, 李小泽, 范如玉, 王行舟, 王雪锋, 童长江 2010 59 8459]
[13] Booske J H, Dobbs R J, Joye C D, Kory C L, Neil G R, Park G S, Park J, Temkin R J 2011 IEEE Trans. Terahertz Sci. Tech. 1 54
[14] Wang J G, Zhang D H, Liu C L, Li Y D, Wang Y, Wang H G, Qiao H L, Li X Z 2009 Phys. Plasmas 16 033108
[15] Wang W X, Yue L N, Zhao G Q, Gong Y B 2005 J. Infrared Milli. Terahz. Waves 26 147
[16] Wang G Q, Li X Z, Wang J G, Wang X Z, Tong C J 2009 Proc. SPIE 7385 73850Y
[17] Zhu X Q, Wang J G, Wang Y, Wang G Q, Chen Z G 2011 High power Laser and Particle Beams 23 2157 (in Chinese) [朱湘琴, 王建国, 王玥, 王光强, 陈再高 2011 强激光与粒子束 23 2157]
计量
- 文章访问数: 5849
- PDF下载量: 484
- 被引次数: 0