搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于飞秒光频梳的压电陶瓷闭环位移控制系统

朱敏昊 吴学健 尉昊赟 张丽琼 张继涛 李岩

引用本文:
Citation:

基于飞秒光频梳的压电陶瓷闭环位移控制系统

朱敏昊, 吴学健, 尉昊赟, 张丽琼, 张继涛, 李岩

Closed-loop displacement control system for piezoelectric transducer based on optical frequency comb

Zhu Min-Hao, Wu Xue-Jian, Wei Hao-Yun, Zhang Li-Qiong, Zhang Ji-Tao, Li Yan
PDF
导出引用
  • 利用飞秒光频梳、外腔可调谐半导体激光器和法布里-珀罗干涉仪建立了一套压电陶瓷亚纳米级闭环位移控制系统. 将可调谐半导体激光器锁定至光频梳, 通过精确调谐光频梳的重复频率, 实现了半导体激光器在其工作频率范围内的精密调谐. 利用Pound-Drever-Hall锁定技术将带有压电陶瓷的法布里-珀罗腔锁定至半导体激光器, 进而通过频率发生系统控制压电陶瓷产生亚纳米级分辨率的位移. 实验研究发现锁定至光频梳后可调谐半导体激光器1 s的Allan标准偏差为1.68×10-12, 将其在30.9496 GHz范围内进行连续闭环调谐, 可获得压电陶瓷的位移行程约为4.8 μm; 以3.75 Hz的步长扫描光频梳的重复频率, 实现了压电陶瓷的450 pm闭环位移分辨率并测定了压电陶瓷的磁滞特性曲线. 该系统不存在非线性测量误差, 且激光频率及压电陶瓷位移均溯源至铷钟频率源.
    A sub-nanometric closed-loop displacement control system for piezoelectric transducers has been set up based on an optical frequency comb, an external cavity diode laser and a Fabry-Perot interferometer. The external cavity diode laser is locked to the optical frequency comb, so that the optical frequency can be set precisely in the working range by tuning the repetition frequency of the optical frequency comb. As a sensor of the piezoelectric transducer, the Fabry-Perot cavity is locked to the external cavity diode laser by means of the Pound-Drever-Hall locking technique. With the aid of precisely controlling the diode laser frequency, displacements of the piezoelectric transducer can be obtained with a sub-nanometric resolution. Experimental results show that the Allan deviation of the diode laser frequency is 1.68×10-12 after locked to the optical frequency comb. The displacement range of 4.8 μm can be generated by the piezoelectric transducer through continuously and precisely tuning the diode laser frequency in the range of 30.9496 GHz. Meantime, the displacement resolution of 450 pm is achieved by scanning the repetition frequency of the optical frequency comb at a step of 3.75 Hz. Besides, the hysteresis characteristic of the piezoelectric transducer is measured using this system. Compared to those methods based on heterodyne interferometers to calibrate the displacement of piezoelectric transducers, the nonlinear errors are eliminated and the measurement results are traceable to an Rb clock.
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 51105227, 61205147)和清华大学自主科研计划资助的课题.
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 51105227, 61205147), and the Tsinghua University Initiative Scientific Research Program.
    [1]

    Leach R, Haycocks J, Lewis A, Oldfield S, Yacoot A 2001 Nanotechnology 12 R1

    [2]

    King T G, Preston M E, Murphy B J M, Cannell D S 1990 Precision. Eng. 12 131

    [3]

    Furutaniy K, Urushibata M, Mohri N 1998 Nanotechnology 9 93

    [4]

    Okazaki Y 1990 Prec. Eng. 12 151

    [5]

    Topcu S, Chassagne L, Haddad D, Alayli Y 2003 Rev. Sci. Instrum. 74 4876

    [6]

    Chassagne L, Topcu S, Alayli Y, Juncar P 2005 Meas. Sci. Technol. 16 1771

    [7]

    Lawall J R 2005 J. Opt. Soc. Am. A 22 2786

    [8]

    Haitjema H, Schellekens P H J, Wetzels S F C L 2000 Metrologia 37 25

    [9]

    Zhang L Q, Li Y 2012 Journal of Optoelectronic· Laser 23 740 (in Chinese) [张丽琼, 李岩 2012 光电子· 激光 23 740]

    [10]

    Li T C, Fang Z J 2011 Chin. Sci. Bull. 56 709 (in Chinese) [李天初, 方占军 2011 科学通报 56 709]

    [11]

    Zhang J T, Wu X J, Li Y, Wei H Y 2012 Acta Phys. Sin. 61 100601 (in Chinese) [张继涛, 吴学健, 李岩, 尉昊赟 2012 61 100601]

    [12]

    Fang Z J, Wang Q, Wang M M, Meng F, Lin B K, Li T C 2007 Acta Phys. Sin. 56 5684 (in Chinese) [方占军, 王强, 王民明, 孟飞, 林百科, 李天初 2007 56 5684]

    [13]

    Wu X J, Wei H Y, Zhu M H, Zhang J T, Li Y 2012 Acta Phys. Sin. 61 180601 (in Chinese) [吴学健, 尉昊赟, 朱敏昊, 张继涛, 李岩 2012 61 180601]

    [14]

    Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97

    [15]

    Jones D J, Diddams S A, Ranka J K, Stenz A, Windler R S, Hall J L, Cundiff S T 2000 Science 288 635

    [16]

    Udem T, Holzwarth R, Hansch T W 2002 Nature 416 233

  • [1]

    Leach R, Haycocks J, Lewis A, Oldfield S, Yacoot A 2001 Nanotechnology 12 R1

    [2]

    King T G, Preston M E, Murphy B J M, Cannell D S 1990 Precision. Eng. 12 131

    [3]

    Furutaniy K, Urushibata M, Mohri N 1998 Nanotechnology 9 93

    [4]

    Okazaki Y 1990 Prec. Eng. 12 151

    [5]

    Topcu S, Chassagne L, Haddad D, Alayli Y 2003 Rev. Sci. Instrum. 74 4876

    [6]

    Chassagne L, Topcu S, Alayli Y, Juncar P 2005 Meas. Sci. Technol. 16 1771

    [7]

    Lawall J R 2005 J. Opt. Soc. Am. A 22 2786

    [8]

    Haitjema H, Schellekens P H J, Wetzels S F C L 2000 Metrologia 37 25

    [9]

    Zhang L Q, Li Y 2012 Journal of Optoelectronic· Laser 23 740 (in Chinese) [张丽琼, 李岩 2012 光电子· 激光 23 740]

    [10]

    Li T C, Fang Z J 2011 Chin. Sci. Bull. 56 709 (in Chinese) [李天初, 方占军 2011 科学通报 56 709]

    [11]

    Zhang J T, Wu X J, Li Y, Wei H Y 2012 Acta Phys. Sin. 61 100601 (in Chinese) [张继涛, 吴学健, 李岩, 尉昊赟 2012 61 100601]

    [12]

    Fang Z J, Wang Q, Wang M M, Meng F, Lin B K, Li T C 2007 Acta Phys. Sin. 56 5684 (in Chinese) [方占军, 王强, 王民明, 孟飞, 林百科, 李天初 2007 56 5684]

    [13]

    Wu X J, Wei H Y, Zhu M H, Zhang J T, Li Y 2012 Acta Phys. Sin. 61 180601 (in Chinese) [吴学健, 尉昊赟, 朱敏昊, 张继涛, 李岩 2012 61 180601]

    [14]

    Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97

    [15]

    Jones D J, Diddams S A, Ranka J K, Stenz A, Windler R S, Hall J L, Cundiff S T 2000 Science 288 635

    [16]

    Udem T, Holzwarth R, Hansch T W 2002 Nature 416 233

  • [1] 王永博, 唐曦, 赵乐涵, 张鑫, 邓进, 吴正茂, 杨俊波, 周恒, 吴加贵, 夏光琼. 基于Si3N4微环混沌光频梳的Tbit/s并行实时物理随机数方案.  , 2024, 73(8): 084203. doi: 10.7498/aps.73.20231913
    [2] 郭状, 欧阳峰, 卢志舟, 王梦宇, 谭庆贵, 谢成峰, 魏斌, 何兴道. 氟化镁微瓶腔光频梳光谱分析及优化.  , 2024, 73(3): 034202. doi: 10.7498/aps.73.20231126
    [3] 金星, 肖莘宇, 龚旗煌, 杨起帆. 微腔光梳的产生、发展及应用.  , 2023, 72(23): 234203. doi: 10.7498/aps.72.20231816
    [4] 赵辛未, 吕俊鹏, 倪振华. 铅卤钙钛矿法布里-珀罗谐振腔激光器.  , 2021, 70(5): 054205. doi: 10.7498/aps.70.20201302
    [5] 张松然, 何代华, 涂华垚, 孙艳, 康亭亭, 戴宁, 褚君浩, 俞国林. HgCdTe薄膜的输运特性及其应力调控.  , 2020, 69(5): 057301. doi: 10.7498/aps.69.20191330
    [6] 刘亦轩, 李昭, 汤浩正, 逯景桐, 李敬锋, 龚文, 王轲. 晶粒尺寸对钙钛矿型压电陶瓷压电性能的影响.  , 2020, 69(21): 217704. doi: 10.7498/aps.69.20201079
    [7] 廖小瑜, 曹俊诚, 黎华. 太赫兹半导体激光光频梳研究进展.  , 2020, 69(18): 189501. doi: 10.7498/aps.69.20200399
    [8] 郑隆立, 齐世超, 王春明, 石磊. 高居里温度铋层状结构钛钽酸铋(Bi3TiTaO9)的压电、介电和铁电特性.  , 2019, 68(14): 147701. doi: 10.7498/aps.68.20190222
    [9] 杨光, 王杰, 王军民. 采用高信噪比电磁诱导透明谱测定85Rb原子5D5/2态的超精细相互作用常数.  , 2017, 66(10): 103201. doi: 10.7498/aps.66.103201
    [10] 丁琨, 武雪飞, 窦秀明, 孙宝权. 电驱动金刚石对顶砧低温连续加压装置.  , 2016, 65(3): 037701. doi: 10.7498/aps.65.037701
    [11] 刘亭洋, 张福民, 吴翰钟, 李建双, 石永强, 曲兴华. 光学频率梳啁啾干涉实现绝对距离测量.  , 2016, 65(2): 020601. doi: 10.7498/aps.65.020601
    [12] 侯佳佳, 赵刚, 谭巍, 邱晓东, 贾梦源, 马维光, 张雷, 董磊, 冯晓霞, 尹王保, 肖连团, 贾锁堂. 基于压电陶瓷与光纤电光调制器双通道伺服反馈的激光相位锁定实验研究.  , 2016, 65(23): 234204. doi: 10.7498/aps.65.234204
    [13] 高峰, 刘辉, 许朋, 王叶兵, 田晓, 常宏. 用于互组跃迁谱测量的窄线宽激光系统.  , 2014, 63(14): 140704. doi: 10.7498/aps.63.140704
    [14] 凌进中, 黄元申, 王中飞, 王琦, 张大伟, 庄松林. 可调谐型金属线栅偏振器的特性研究.  , 2013, 62(14): 144214. doi: 10.7498/aps.62.144214
    [15] 吴学健, 尉昊赟, 朱敏昊, 张继涛, 李岩. 基于飞秒光频梳的双频He-Ne激光器频率测量.  , 2012, 61(18): 180601. doi: 10.7498/aps.61.180601
    [16] 张继涛, 吴学健, 李岩, 尉昊赟. 利用光频梳提高台阶高度测量准确度的方法.  , 2012, 61(10): 100601. doi: 10.7498/aps.61.100601
    [17] 孙琳, 褚君浩, 杨平雄, 冯楚德. Sr位Nd掺杂对SrBi2Nb2O9性能的影响及机理研究.  , 2009, 58(8): 5790-5797. doi: 10.7498/aps.58.5790
    [18] 王燕花, 任文华, 刘 艳, 谭中伟, 简水生. 相位修正的耦合模理论用于计算光纤Bragg光栅法布里-珀罗腔透射谱.  , 2008, 57(10): 6393-6399. doi: 10.7498/aps.57.6393
    [19] 任文华, 王燕花, 冯素春, 谭中伟, 刘 艳, 简水生. 对光纤布拉格光栅法布里-珀罗腔纵模间隔问题的研究.  , 2008, 57(12): 7758-7764. doi: 10.7498/aps.57.7758
    [20] 邓玉强, 王清月, 吴祖斌, 张志刚. 载波-包络相位对于基频光与其自身倍频光脉冲合成的影响.  , 2006, 55(2): 737-742. doi: 10.7498/aps.55.737
计量
  • 文章访问数:  7714
  • PDF下载量:  1220
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-10-27
  • 修回日期:  2012-11-29
  • 刊出日期:  2013-04-05

/

返回文章
返回
Baidu
map