-
以Pb粉、Te粉、Ag粉、Ge粉为原材料,在真空气氛下合成(AgSbTe2)100-x-(GeTe)x (x=8090) (TAGS)合金热电材料, X射线衍射(XRD)分析表明,热压烧结后合金具有低温菱形结构. 通过热压烧结法将TAGS粉末制备成块体材料,运用XRD和扫描电子显微镜对材料的物相成分、晶体结构和形貌进行了表征.采用直流四探针法测定样品的电导率,当样品两端的温差为14℃ 的情况下测量Seebeck系数.通过材料热电性能测试,研究了30500℃温度范围内不同组分 样品性能参数的变化.结果表明,所制备的TAGS热电材料具有纳米结构, 其性能随着组分的变化而变化, TAGS-80具有较好的热电性能,在530℃时具有最高热电优值(ZT=1.80).
-
关键词:
- 热电材料 /
- (AgSbTe2)100-x-(GeTe)x合金 /
- 热压 /
- 热电性能
Using pure metal Ag, Te, Ge and Sb powders as raw materials, (AgSbTe2)100-x-(GeTe)x (x=8090) (TAGS) are synthesized by vacuum reaction. X-ray diffraction (XRD) analysis results show that after sintering the alloys each have a rhombohedral structure. TAGS power is sintered by hot pressing method. Their phase compositions, crystal structures and morphologies are characterized by XRD and scanning electron microscope analysis methods. Their electric conductivities are measured by direct current method. Their Seebeck coefficients are measured when a temperature difference (T=14℃) is applied along two ends of sample. Through testing the thermoelectric properties of materials, the variations of different performance parameters of the sample are investigated in a temperature range of 30500℃. The results show that the sample is nano crystals and its thermoelectric properties change as the composition changes. We can see that TAGS-80 has a good thermal performance, with ZTmax=1.8 at 530℃.-
Keywords:
- thermoelectric material /
- alloy of (AgSbTe2)100-x-(GeTe)x /
- hot pressing /
- thermoelectric properties
[1] Chen G, Dresselhaus M S, Dresselhaus G, Fleurial J P, Caillat T 2003 Int. Mater. Rev. 48 45
[2] Goldsmid H J 1986 Electronic Refrigeration (London: Pion) p10
[3] Rowe D M 1996 Conversion and Application of Thermoelectric Material (Beijing: Weapon Industry Press) pp2, 19 (in Chinese) [Rowe D M 1996 温差电转换及其应用(中译本)(北京:兵器工业出版社) 第2,19页]
[4] Rosi F D, Dismukes J P, Hockings E F 1960 Electr. Eng. 79 450
[5] Skrabek E, Trimmer D 1976 U. S. Patent 3945855
[6] Skrabek E A 1974 Am. Soc. Mech. Eng. 33 160
[7] Yang S H, Zhu T J, Zhao X B 2007 Func. Mater. 38 1365 (in Chinese) [杨胜辉, 朱铁军, 赵新兵 2007 功能材料 38 1365]
[8] Zhang S N, He J, Ji X H 2009 J. Electron. Mater. 38 1142
[9] Cui J L, Fu H, Yan Y M 2010 J. Electron. Mater. 39 1493
[10] Yang S H, Zhu T J 2010 J. Electron. Mater. 39 2127
[11] Cook B A, Wu X Z 2007 J. Mater. Lett. 42 7643
[12] Yuefei A Φ 1958 Thermoelectric Dipole of Semiconductor (Beijing: Science Press) p28 (in Chinese) [约飞 A Φ 1958 半导体温差电偶(中译本)(北京:科学出版社) 第28页]
[13] Liu E K, Zhu B S, Luo J S 2005 Physial of Semiconductor (6th ed) (Beijing: Electronic Industry Press) p372 (in Chinese) [刘恩科, 朱秉升, 罗晋生 2005 半导体物理学(第6版) (北京:电子工业出版社) 第372页]
-
[1] Chen G, Dresselhaus M S, Dresselhaus G, Fleurial J P, Caillat T 2003 Int. Mater. Rev. 48 45
[2] Goldsmid H J 1986 Electronic Refrigeration (London: Pion) p10
[3] Rowe D M 1996 Conversion and Application of Thermoelectric Material (Beijing: Weapon Industry Press) pp2, 19 (in Chinese) [Rowe D M 1996 温差电转换及其应用(中译本)(北京:兵器工业出版社) 第2,19页]
[4] Rosi F D, Dismukes J P, Hockings E F 1960 Electr. Eng. 79 450
[5] Skrabek E, Trimmer D 1976 U. S. Patent 3945855
[6] Skrabek E A 1974 Am. Soc. Mech. Eng. 33 160
[7] Yang S H, Zhu T J, Zhao X B 2007 Func. Mater. 38 1365 (in Chinese) [杨胜辉, 朱铁军, 赵新兵 2007 功能材料 38 1365]
[8] Zhang S N, He J, Ji X H 2009 J. Electron. Mater. 38 1142
[9] Cui J L, Fu H, Yan Y M 2010 J. Electron. Mater. 39 1493
[10] Yang S H, Zhu T J 2010 J. Electron. Mater. 39 2127
[11] Cook B A, Wu X Z 2007 J. Mater. Lett. 42 7643
[12] Yuefei A Φ 1958 Thermoelectric Dipole of Semiconductor (Beijing: Science Press) p28 (in Chinese) [约飞 A Φ 1958 半导体温差电偶(中译本)(北京:科学出版社) 第28页]
[13] Liu E K, Zhu B S, Luo J S 2005 Physial of Semiconductor (6th ed) (Beijing: Electronic Industry Press) p372 (in Chinese) [刘恩科, 朱秉升, 罗晋生 2005 半导体物理学(第6版) (北京:电子工业出版社) 第372页]
计量
- 文章访问数: 8487
- PDF下载量: 886
- 被引次数: 0