搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mn掺杂后三元黄铜矿结构半导体CuInTe2的缺陷特征与热电性能

王鸿翔 应鹏展 杨江锋 陈少平 崔教林

引用本文:
Citation:

Mn掺杂后三元黄铜矿结构半导体CuInTe2的缺陷特征与热电性能

王鸿翔, 应鹏展, 杨江锋, 陈少平, 崔教林

Defects and thermoelectric performance of ternary chalcopyrite CuInTe2-based semiconductors doped with Mn

Wang Hong-Xiang, Ying Peng-Zhan, Yang Jiang-Feng, Chen Shao-Ping, Cui Jiao-Lin
PDF
导出引用
  • 三元黄铜矿结构(也称类金刚石结构)半导体是一类具有热电转换潜力的新型热电材料. 本次工作中采用电负性更小的Mn元素替换CuInTe2黄铜矿结构半导体中的Cu元素, 设计制备贫Cu化合物Cu1-xInMnxTe2. 研究表明, 当Mn含量较低时, Mn优先占位在In 位置产生受主缺陷MnIn-. 因此随着Mn含量的增大, 载流子浓度和电导率均得到改善. 但当Mn含量进一步增大后, Mn可同时占位在In位置和Cu位置, 除产生受主缺陷MnIn-外, 还能产生施主缺陷MnCu+. 由于两类极性相反的缺陷之间的湮灭现象, 使得缺陷浓度及载流子浓度开始降低, 晶格结构畸变有变小趋势, 因此在高温下晶格热导率仅略有提高. 研究结果表明, 在某一特定的Mn含量(x=0.05)时, 材料具有最优的热电性能(ZT=0.84@810.0 K), 这一性能约是未掺杂CuInTe2的2倍.
    In thermoelectric (TE) semiconductors, there are three physical parameters that govern the TE performance (i.e. Seebeck coefficient (), electrical conductivity (), and thermal conductivity ()); they are interrelated, hence it is hard to optimize them simultaneously. In order to improve the TE performance, we need to further explore new materials. Ternary chalcopyrite (diamond-like) I-III-VI2 semiconductors (Eg = 1:02 eV) are new materials of the TE family, which have potential in conversion between heat and electricity. Since in the ternary chalcopyrite structure, such as Cu(Ag) MTe2, there is an inherent Coulomb attraction between charged defects MCu(Ag)2+ and 2VCu(Ag)- (a native defect pair, i.e., metal M-on-Cu or Ag antisites and two Cu or Ag vacancies), hence the electronic and structural properties can easily be tailored if these two defects, along with the creation of other defects, are modified through the introduciton of foreign elements. Besides, the ternary I-III-VI2 compounds often show tetragonal distortion because 0.25, = c/2a 1 (here and are the anion position displacement parameters, and a and c are the lattice parameters), and the cationanion distances are not equal (dCuTedInTe). Any occupation by foreign elements in the cation sites of I-III-VI2 will cause the redistribution of bond charges between I-VI and III-VI, thus leading to a tiny adjustment of the crystal structure and altering the phonon scattering behavior. In this work, we substitute Mn for Cu in the chalcopyrite CuInTe2 and prepare the Cu-poor Cu1-xInMnxTe2 semiconductors. Investigations of Z-ray patterns after Rietveld refinement reveal that Mn prefers In to Cu lattice sites for low Mn content (x 0.1), thus creating MnIn- as an active acceptor, and improving the carrier concentration (n) and electrical conductivity as Mn content increases. However, Mn can either occupy In or Cu sites simultaneously when x 0.1, and generate both the donor defect MnCu+ and the acceptor defect MnIn-. In this case, annihilation may occur between these two defects, allowing the reduction in both the defect and carrier concentrations. Because of the annihilation between the two defects, two values (|| = |-0.25| and ||= |-1.0|) reduce, this only yields a subtle change in the difference between mean cation-anion distance (RInTe-RCuTe), indicating a small distortion tendency in lattice structure as Mn content increases. Because of this, there is a limited enhancement in lattice thermal conductivity (L) at high temperatures. As a consequence, we attain an optimal TE performance at a certain Mn content (x = 0.05) with the dimensionless figure of merit (ZT) ZT = 0.84 at 810.0 K, which is about twice as much as that of Mn-free CuInTe2.
      通信作者: 应鹏展, ypz3889@sina.com;cuijiaolin@163.com ; 崔教林, ypz3889@sina.com;cuijiaolin@163.com
    • 基金项目: 国家自然科学基金(批准号: 51171084)、浙江省自然科学基金(批准号: LY14E010003) 和宁波市自然科学基金(批准号: 2014A610016)资助的课题.
      Corresponding author: Ying Peng-Zhan, ypz3889@sina.com;cuijiaolin@163.com ; Cui Jiao-Lin, ypz3889@sina.com;cuijiaolin@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51171084), the Zhejiang Provincial Natural Science Foundation, China (Grant No. LY14E010003), and the Ningbo Natural Science Foundation, China (Grant No. 2014A610016).
    [1]

    Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E K, Kanatzidis M G 2004 Science 303 818

    [2]

    Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder G J 2008 Science 321 554

    [3]

    Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder G J 2011 Nature 473 66

    [4]

    Liu W, Tan X, Yin K, Liu H, Tang X, Shi J, Zhang Q, Uher C 2012 Phys. Rev. Lett. 108 166601

    [5]

    Biswas K, He J, Blum I D, Wu C, Hogan T P, Seidman D N, Dravid V P, Kanatzidis M G 2012 Nature 489 414

    [6]

    Hicks L D, Dresselhaus M S 1993 Phys. Rev. B 47 12727

    [7]

    Chen X B, Duan W H 2015 Acta Phys. Sin. 64 186302 (in Chinses) [陈晓彬, 段文晖 2015 64 186302]

    [8]

    Wu H N, Sun X, Gong W J, Yi G Y 2015 Acta Phys. Sin. 64 077301 (in Chinese) [吴海娜, 孙雪, 公卫江, 易光宇 2015 64 077301]

    [9]

    Wang Z C, Li H, Su X L, Tang X F 2011 Acta Phys. Sin. 60 027202 (in Chinese) [王作成, 李涵, 苏贤礼, 唐新峰 2011 60 027202]

    [10]

    Zhang X, Ma X Y, Zhang F P, Wu P X, Lu Q M, Liu Y Q, Zhang J X 2012 Acta Phys. Sin. 61 047201 (in Chinese) [张忻, 马旭颐, 张飞鹏, 武鹏旭, 路清梅, 刘燕琴, 张久兴 2012 61 047201]

    [11]

    Wang S X, Zhang X 2015 J. Thermal Sci. Techno. 14 119 (in Chinses) [王世学, 张星 2015 热科学与技术 14 119]

    [12]

    Walia S, Weber R, Balendhran S, Yao D, Abrahamson J T, Zhuiykov S, Bhaskaran M, Sriram S, Strano M S, Kalantar-Zadeh K 2012 Chem. Commun. 48 7462

    [13]

    Walia S, Balendhran S, Yi P, Yao D, Zhuiykov S, Pannirselvam M, Weber R, Strano M S, Bhaskaran M, Sriram S, Kalantar-Zadeh K 2013 J. Phys. Chem.C 117 9137

    [14]

    Walia S, Weber R, Sriram S, Bhaskaran M, Latham K, Zhuiykov S, Kalantar-Zadeh K 2011 Energy Environ. Sci. 4 3558

    [15]

    Walia S, Weber R, Latham K, Petersen P, Abrahamson J T, Strano M S, Kalantar-Zadeh K 2011 Adv. Func. Mater. 21 2072

    [16]

    Shimizu S, Choi W, Abrahamson J T, Strano M S 2011 Phys. Sta. Sol. 248 2445

    [17]

    Lee K Y, Hwang H, Choi W 2014 ACS Appl.Mater. Interfaces 6 15575

    [18]

    Abrahamson J T, Sempere B, Walsh M P, Forman J M, Sen F, Sen S, Mahajan S G, Paulus G L, Wang Q H, Choi W, Strano M S 2013 ACS Nano 7 6533

    [19]

    Plirdpring T, Kurosaki K, Kosuga A, Day T, Firdosy S, Ravi V, Snyder G J, Harnwunggmoung A, Sugahara T, Ohishi Y, Muta H, Yamanaka S 2012 Adv. Mater. 24 3622

    [20]

    Liu R, Xi L, Liu H, Shi X, Zhang W, Chen L 2012 Chem.Commun. 48 3818

    [21]

    Fan F, Wu L, Yu S 2014 Energ. Environ. Sci. 7 190

    [22]

    Zhang J, Liu R, Cheng N, Zhang Y, Yang J, Uher C, Shi X, Chen L, Zhang W 2014 Adv. Mater. 26 3848

    [23]

    Wang L, Ying P, Deng Y, Zhou H, Du Z, Cui J 2014 RSC Adv. 4 33897

    [24]

    Zhang S B, Wei S H, Zunger A 1998 Phys. Rev. B 57 9642

    [25]

    Zhang S B, Wei S H, Zunger A 1997 Phys. Rev. Lett. 78 4059

    [26]

    Rincn C, Wasim S M, Marn G 2002 Appl. Phys. Lett. 80 998

    [27]

    Yang J, Chen S, Du Z, Liu X, Cui J 2014 Dalton Trans. 43 15228

    [28]

    Yuan Z K, Peng X, Chen S Y 2015 Acta Phys. Sin. 64 186102 (in Chinese) (袁振坤, 许鹏, 陈时友 2015 64 186102]

    [29]

    Lee J H, Wu J Q, Grossman J C 2010 Phys. Rev. Lett. 104 016602

    [30]

    Roussak L, Wagner G, Schorr S, Bente K 2005 J. Solid State Chem. 178 3476

    [31]

    Liu X, Zhu T, Wang H, Hu L, Xie H, Jiang G, Snyder J G, Zhao X B 2013 Adv. Energy Mater. 3 1238

    [32]

    Moulder J F, Chastain J Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data (Perkin-Elmer Corporation, Physical Electronics Division, Eden Prairie, Minnesota, 1992) p261

    [33]

    Yao J, Takas N J, Schliefert M L, Paprocki D S, Blanchard P E R, Gou H, Mar A, Exstrom C L, Darveau S A, Poudeu P F, Aitken J A 2011 Phys. Rev. B 84 075203

    [34]

    Heo N H, Park J S, Kim Y J, Lim W T, Jung S W, Seff K 2003 J. Phys. Chem. B 107 1120

    [35]

    Zhou H, Park J 2015 Phys. Sta. Sol. (a) 212 414

    [36]

    Li Y, Meng Q, Deng Y, Zhou H, Gao Y, Li Y, Yang J, Cui J 2012 Appl. Phys. Lett. 100 231903

    [37]

    Abrahams S C, Bernstein J L 1973 J. Chem. Phys. 59 5415

    [38]

    Abrahams S C, Bernstein J L 1974 J. Chem. Phys 61 1140

    [39]

    Jaffe J E, Zunger A 1984 Phys Rev. B 29 1882

    [40]

    Luo Y, Yang J, Li G, Liu M, Xiao Y, Fu L, Li W, Zhu P, Peng J, Gao S, Zhang J 2014 Adv. Energy Mater. 4 1300599

    [41]

    Liu M, Qin X Y 2012 Appl. Phys. Lett. 101 132103

    [42]

    Liu M, Qin X Y, Liu C S, Zeng Z 2011 Appl. Phys. Lett. 99 062112

    [43]

    Lv H Y, Liu H J, Tan X J, Pan L, Wen Y W, Shi J, Tang X F 2012 Nanoscale 4 511

    [44]

    He J, Girard S N, Kanatzidis M G, Dravid V P 2010 Adv. Funct. Mater. 20 764

  • [1]

    Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E K, Kanatzidis M G 2004 Science 303 818

    [2]

    Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder G J 2008 Science 321 554

    [3]

    Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder G J 2011 Nature 473 66

    [4]

    Liu W, Tan X, Yin K, Liu H, Tang X, Shi J, Zhang Q, Uher C 2012 Phys. Rev. Lett. 108 166601

    [5]

    Biswas K, He J, Blum I D, Wu C, Hogan T P, Seidman D N, Dravid V P, Kanatzidis M G 2012 Nature 489 414

    [6]

    Hicks L D, Dresselhaus M S 1993 Phys. Rev. B 47 12727

    [7]

    Chen X B, Duan W H 2015 Acta Phys. Sin. 64 186302 (in Chinses) [陈晓彬, 段文晖 2015 64 186302]

    [8]

    Wu H N, Sun X, Gong W J, Yi G Y 2015 Acta Phys. Sin. 64 077301 (in Chinese) [吴海娜, 孙雪, 公卫江, 易光宇 2015 64 077301]

    [9]

    Wang Z C, Li H, Su X L, Tang X F 2011 Acta Phys. Sin. 60 027202 (in Chinese) [王作成, 李涵, 苏贤礼, 唐新峰 2011 60 027202]

    [10]

    Zhang X, Ma X Y, Zhang F P, Wu P X, Lu Q M, Liu Y Q, Zhang J X 2012 Acta Phys. Sin. 61 047201 (in Chinese) [张忻, 马旭颐, 张飞鹏, 武鹏旭, 路清梅, 刘燕琴, 张久兴 2012 61 047201]

    [11]

    Wang S X, Zhang X 2015 J. Thermal Sci. Techno. 14 119 (in Chinses) [王世学, 张星 2015 热科学与技术 14 119]

    [12]

    Walia S, Weber R, Balendhran S, Yao D, Abrahamson J T, Zhuiykov S, Bhaskaran M, Sriram S, Strano M S, Kalantar-Zadeh K 2012 Chem. Commun. 48 7462

    [13]

    Walia S, Balendhran S, Yi P, Yao D, Zhuiykov S, Pannirselvam M, Weber R, Strano M S, Bhaskaran M, Sriram S, Kalantar-Zadeh K 2013 J. Phys. Chem.C 117 9137

    [14]

    Walia S, Weber R, Sriram S, Bhaskaran M, Latham K, Zhuiykov S, Kalantar-Zadeh K 2011 Energy Environ. Sci. 4 3558

    [15]

    Walia S, Weber R, Latham K, Petersen P, Abrahamson J T, Strano M S, Kalantar-Zadeh K 2011 Adv. Func. Mater. 21 2072

    [16]

    Shimizu S, Choi W, Abrahamson J T, Strano M S 2011 Phys. Sta. Sol. 248 2445

    [17]

    Lee K Y, Hwang H, Choi W 2014 ACS Appl.Mater. Interfaces 6 15575

    [18]

    Abrahamson J T, Sempere B, Walsh M P, Forman J M, Sen F, Sen S, Mahajan S G, Paulus G L, Wang Q H, Choi W, Strano M S 2013 ACS Nano 7 6533

    [19]

    Plirdpring T, Kurosaki K, Kosuga A, Day T, Firdosy S, Ravi V, Snyder G J, Harnwunggmoung A, Sugahara T, Ohishi Y, Muta H, Yamanaka S 2012 Adv. Mater. 24 3622

    [20]

    Liu R, Xi L, Liu H, Shi X, Zhang W, Chen L 2012 Chem.Commun. 48 3818

    [21]

    Fan F, Wu L, Yu S 2014 Energ. Environ. Sci. 7 190

    [22]

    Zhang J, Liu R, Cheng N, Zhang Y, Yang J, Uher C, Shi X, Chen L, Zhang W 2014 Adv. Mater. 26 3848

    [23]

    Wang L, Ying P, Deng Y, Zhou H, Du Z, Cui J 2014 RSC Adv. 4 33897

    [24]

    Zhang S B, Wei S H, Zunger A 1998 Phys. Rev. B 57 9642

    [25]

    Zhang S B, Wei S H, Zunger A 1997 Phys. Rev. Lett. 78 4059

    [26]

    Rincn C, Wasim S M, Marn G 2002 Appl. Phys. Lett. 80 998

    [27]

    Yang J, Chen S, Du Z, Liu X, Cui J 2014 Dalton Trans. 43 15228

    [28]

    Yuan Z K, Peng X, Chen S Y 2015 Acta Phys. Sin. 64 186102 (in Chinese) (袁振坤, 许鹏, 陈时友 2015 64 186102]

    [29]

    Lee J H, Wu J Q, Grossman J C 2010 Phys. Rev. Lett. 104 016602

    [30]

    Roussak L, Wagner G, Schorr S, Bente K 2005 J. Solid State Chem. 178 3476

    [31]

    Liu X, Zhu T, Wang H, Hu L, Xie H, Jiang G, Snyder J G, Zhao X B 2013 Adv. Energy Mater. 3 1238

    [32]

    Moulder J F, Chastain J Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data (Perkin-Elmer Corporation, Physical Electronics Division, Eden Prairie, Minnesota, 1992) p261

    [33]

    Yao J, Takas N J, Schliefert M L, Paprocki D S, Blanchard P E R, Gou H, Mar A, Exstrom C L, Darveau S A, Poudeu P F, Aitken J A 2011 Phys. Rev. B 84 075203

    [34]

    Heo N H, Park J S, Kim Y J, Lim W T, Jung S W, Seff K 2003 J. Phys. Chem. B 107 1120

    [35]

    Zhou H, Park J 2015 Phys. Sta. Sol. (a) 212 414

    [36]

    Li Y, Meng Q, Deng Y, Zhou H, Gao Y, Li Y, Yang J, Cui J 2012 Appl. Phys. Lett. 100 231903

    [37]

    Abrahams S C, Bernstein J L 1973 J. Chem. Phys. 59 5415

    [38]

    Abrahams S C, Bernstein J L 1974 J. Chem. Phys 61 1140

    [39]

    Jaffe J E, Zunger A 1984 Phys Rev. B 29 1882

    [40]

    Luo Y, Yang J, Li G, Liu M, Xiao Y, Fu L, Li W, Zhu P, Peng J, Gao S, Zhang J 2014 Adv. Energy Mater. 4 1300599

    [41]

    Liu M, Qin X Y 2012 Appl. Phys. Lett. 101 132103

    [42]

    Liu M, Qin X Y, Liu C S, Zeng Z 2011 Appl. Phys. Lett. 99 062112

    [43]

    Lv H Y, Liu H J, Tan X J, Pan L, Wen Y W, Shi J, Tang X F 2012 Nanoscale 4 511

    [44]

    He J, Girard S N, Kanatzidis M G, Dravid V P 2010 Adv. Funct. Mater. 20 764

  • [1] 何俊松, 罗丰, 王剑, 杨士冠, 翟立军, 程林, 刘虹霞, 张艳, 李艳丽, 孙志刚, 胡季帆. 熔融旋甩制备Co掺杂TiNiCoxSn合金的热电性能.  , 2024, 73(10): 107201. doi: 10.7498/aps.73.20240112
    [2] 刘超, 杨岳洋, 南策文, 林元华. MAX及其衍生MXene相碳化物的热电性能及展望.  , 2021, 70(20): 206501. doi: 10.7498/aps.70.20211050
    [3] 黄青松, 段波, 陈刚, 叶泽昌, 李江, 李国栋, 翟鹏程. Mn-In-Cu共掺杂优化SnTe基材料的热电性能.  , 2021, 70(15): 157401. doi: 10.7498/aps.70.20202020
    [4] 袁珉慧, 乐文凯, 谈小建, 帅晶. 二维共价键子结构Zintl相热电材料研究及进展.  , 2021, 70(20): 207304. doi: 10.7498/aps.70.20211010
    [5] 赵英浩, 张瑞, 张波萍, 尹阳, 王明军, 梁豆豆. Cu1.8–x Sbx S热电材料的相结构与电热输运性能.  , 2021, 70(12): 128401. doi: 10.7498/aps.70.20201852
    [6] 黄露露, 张建, 孔源, 李地, 辛红星, 秦晓英. 黄铜矿Cu1–xNixGaTe2热电输运性质的优化.  , 2021, 70(20): 207101. doi: 10.7498/aps.70.20211165
    [7] 王雅宁, 陈少平, 樊文浩, 郭敬云, 吴玉程, 王文先. PbTe基热电接头界面性能.  , 2020, 69(24): 246801. doi: 10.7498/aps.69.20201080
    [8] 郭敬云, 陈少平, 樊文浩, 王雅宁, 吴玉程. 改善Te基热电材料与复合电极界面性能.  , 2020, 69(14): 146801. doi: 10.7498/aps.69.20200436
    [9] 王拓, 陈弘毅, 仇鹏飞, 史迅, 陈立东. 具有本征低晶格热导率的硫化银快离子导体的热电性能.  , 2019, 68(9): 090201. doi: 10.7498/aps.68.20190073
    [10] 陶颖, 祁宁, 王波, 陈志权, 唐新峰. 氧化铟/聚(3,4-乙烯二氧噻吩)复合材料的微结构及其热电性能研究.  , 2018, 67(19): 197201. doi: 10.7498/aps.67.20180382
    [11] 张玉, 吴立华, 曾李骄开, 刘叶烽, 张继业, 邢娟娟, 骆军. PbSe-MnSe纳米复合热电材料的微结构和电热输运性能.  , 2016, 65(10): 107201. doi: 10.7498/aps.65.107201
    [12] 薛丽, 任一鸣. CuGaTe2和CuInTe2的电子和热电性质的第一性原理研究.  , 2016, 65(15): 156301. doi: 10.7498/aps.65.156301
    [13] 刘海云, 刘湘涟, 田定琪, 杜正良, 崔教林. 含硫宽禁带Ga2Te3基热电半导体的声电输运特性.  , 2015, 64(19): 197201. doi: 10.7498/aps.64.197201
    [14] 吴子华, 谢华清, 曾庆峰. Ag-ZnO纳米复合热电材料的制备及其性能研究.  , 2013, 62(9): 097301. doi: 10.7498/aps.62.097301
    [15] 霍凤萍, 吴荣归, 徐桂英, 牛四通. 热压制备(AgSbTe2)100-x-(GeTe)x合金的热电性能.  , 2012, 61(8): 087202. doi: 10.7498/aps.61.087202
    [16] 张帆, 朱航天, 骆军, 梁敬魁, 饶光辉, 刘泉林. Sb2Te3 纳米结构的制备与表征.  , 2010, 59(10): 7232-7238. doi: 10.7498/aps.59.7232
    [17] 范平, 郑壮豪, 梁广兴, 张东平, 蔡兴民. Sb2Te3热电薄膜的离子束溅射制备与表征.  , 2010, 59(2): 1243-1247. doi: 10.7498/aps.59.1243
    [18] 鄢永高, 唐新峰, 刘海君, 尹玲玲, 张清杰. Ag偏离化学计量比Ag1-xPb18SbTe20材料的热电传输性能.  , 2007, 56(6): 3473-3478. doi: 10.7498/aps.56.3473
    [19] 陈晓阳, 徐象繁, 胡荣星, 任 之, 许祝安, 曹光旱. LixNayCoO2的制备和热电性质.  , 2007, 56(3): 1627-1631. doi: 10.7498/aps.56.1627
    [20] 吕 强, 荣剑英, 赵 磊, 张红晨, 胡建民, 信江波. 热压工艺参数对n型和p型Bi2Te3基赝三元热电材料电学性能的影响.  , 2005, 54(7): 3321-3326. doi: 10.7498/aps.54.3321
计量
  • 文章访问数:  7606
  • PDF下载量:  234
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-15
  • 修回日期:  2015-12-23
  • 刊出日期:  2016-03-05

/

返回文章
返回
Baidu
map