搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铯原子nP3/2 (n = 70—94)里德伯态的紫外单光子激发及量子亏损测量

刘硕 白建东 王杰英 何军 王军民

引用本文:
Citation:

铯原子nP3/2 (n = 70—94)里德伯态的紫外单光子激发及量子亏损测量

刘硕, 白建东, 王杰英, 何军, 王军民

Measurement of quantum defect of cesium nP3/2 (n = 70—94) Rydberg states by using ultraviolet single-photon Rydberg excitation

Liu Shuo, Bai Jian-Dong, Wang Jie-Ying, He Jun, Wang Jun-Min
PDF
HTML
导出引用
  • 基于成熟的光纤激光器、光纤放大器及高效激光频率转换技术, 我们在实验中研制了一套瓦级输出的窄线宽连续波单频可调谐318.6 nm紫外激光系统, 并在室温铯原子气室中实现了6S1/2nP3/2 (n = 70—94)单光子跃迁里德伯激发. 借助由铯原子6S1/2 (F = 4)基态、6P3/2 (F ′= 5)激发态和nP3/2 (n = 70—94)里德伯态构成的V型三能级系统, 通过频率锁定于铯原子6S1/2 (F = 4)—6P3/2 (F ′ = 5)超精细跃迁的852.3 nm探测光束的吸收减弱信号获得了里德伯态的信息, 并利用高精度波长计测量了铯原子nP3/2 (n = 70—94)里德伯态的量子亏损值. 经过与理论计算值的变化趋势进行对比, 我们认为由于原子气室的里德伯屏蔽效应并不能完全屏蔽外部直流电场, 铯原子气室内存在残余的直流电场, 影响了对里德伯态的量子亏损值的实验测量. 利用残余直流电场的Stark效应理论模型及其与有效主量子数n*的依赖关系, 对铯原子里德伯态的量子亏损实验测量值进行了修正. 修正后的铯原子nP3/2 (n = 70—94)态量子亏损测量值为3.5591 ± 0.0007, 与理论计算值相吻合.
    A narrow-linewidth continuous-wave single-frequency tunable 318.6-nm ultraviolet laser system with watt-level output power is developed in our experiment based on well-developed fiber lasers, fiber amplifiers, and efficient laser frequency conversion technique. Cesium 6S1/2nP3/2 (n = 70—94) single-photon Rydberg excitation in a room-temperature cesium atomic vapor cell is realized by using our ultraviolet laser system. The single-photon Rydberg excitation signal is obtained via the V-type three-level atomic system which contains 6S1/2 (F = 4) ground state, 6P3/2 (F = 5) excited state and one of nP3/2 (n = 70—94) Rydberg states. When cesium atoms populated on the ground state are partially excited to Rydberg state by the ultraviolet laser, absorption of 852.3-nm probe beam which is locked to 6S1/2 (F = 4)—6P3/2 (F ′ = 5) hyperfine transition will decrease. In this way, the cesium Rydberg states are detected. The quantum defects for cesium nP3/2 (n = 70—94) Rydberg states are experimentally measured with a high-precision wavemeter. The variation trend of experimentally measured data deviates from that of calculated values. Due to the fact that the cesium vapor cell is positioned in a magnetic shielding tank, the Zeeman effect can be ignored. Considering that the polarizability of Rydberg atoms is proportional to (n*)7, in which n* is the effective principal quantum number, the Rydberg screen effect of cesium atomic vapor cell cannot completely protect cesium atoms from being perturbed by an external DC electric field. Therefore the residual DC electric field existing inside the cesium vapor cell will have a significant influence on quantum defect measurement of Rydberg atoms. Using the theoretical model of Stark effect and the relationship between polarizability of Rydberg atoms and the effective principal quantum number n*, the corrected experimental value of quantum defect for cesium nP3/2 (n = 70—94) Rydberg states is found to be ~(3.5591 ± 0.0007). The corrected experimental value of quantum defect is consistent with the calculation.
      通信作者: 王军民, wwjjmm@sxu.edu.cn
    • 基金项目: 国家重点研发计划课题(批准号: 2017YFA0304502)、国家自然科学基金(批准号: 11774210, 61875111, 61475091)和山西省1331重点学科建设工程经费资助的课题.
      Corresponding author: Wang Jun-Min, wwjjmm@sxu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304502), the National Natural Science Foundation of China (Grant Nos. 11774210, 61875111, 61475091), and the Shanxi Provincial 1331 Projects for Key Subjects Construction.
    [1]

    Gallagher T F1994 Rydberg Atoms (Cambridge: Cambridge University Press) p12

    [2]

    Zimmerman M L, Littman M G, Kash M M, Kleppner D 1979 Phys. Rev. A 20 2251Google Scholar

    [3]

    Sedlacek J A, Schwettmann A, Kübler H, Shaffer J P 2013 Phys. Rev. Lett. 111 063001Google Scholar

    [4]

    Carter J D, Cherry O, Martin J D D 2012 Phys. Rev. A 86 053401Google Scholar

    [5]

    Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T, Shaffer J P 2012 Nature Phys. 8 819Google Scholar

    [6]

    Zhao B, Müller M, Hammerer K, Zoller P 2010 Phys. Rev. A 81 052329Google Scholar

    [7]

    Wilk T, Gaëtan A, Evellin C, Wolters J, Miroshnychenko Y, Grangier P, Browaeys A 2010 Phys. Rev. Lett. 104 010502Google Scholar

    [8]

    Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, Saffman M 2010 Phys. Rev. Lett. 104 010503Google Scholar

    [9]

    Saffman M, Walker T G, Mølmer K 2010 Rev. Mod. Phys. 82 2313Google Scholar

    [10]

    Urban E, Johnson T A, Henage T, Isenhower L, Yavuz D D, Walker T G, Saffman M 2009 Nature Phys. 5 110Google Scholar

    [11]

    Gaëtan A, Miroshnychenko Y, Wilk T, Chotia A, Viteau M, Comparat D, Pillet P, Browaeys A, Grangier P 2009 Nature Phys. 5 115Google Scholar

    [12]

    Hankin A M, JauY Y, Parazzoli L P, Chou C W, Armstrong D J, Landahl A J, Biedermann G W 2014 Phys. Rev. A 89 033416Google Scholar

    [13]

    Dudin Y O, Kuzmich A 2012 Science 336 887Google Scholar

    [14]

    Keating T, Goyal K, Jau Y Y, Biedermann G W, Landahl A J, Deutsch I H 2013 Phys. Rev. A 87 052314Google Scholar

    [15]

    Wang J Y, Bai J D, He J, Wang J M 2016 J. Opt. Soc. Am. B 33 2020

    [16]

    Lorenzen C J, Niemax K 1984 Z. Phys. A: Atoms and Nuclei 315 127Google Scholar

    [17]

    Li W H, Mourachko I, Noel M W, Gallagher T F 2003 Phys. Rev. A 67 052502Google Scholar

    [18]

    Wang J Y, Bai J D, He J, Wang J M 2017 Opt. Express 25 22510Google Scholar

    [19]

    Baugh J F, Ciocca M, Edmonds D A, Nellesen P T, Burkhardt C E, Leventhal J J 1996 Phys. Rev. A 54 R4641Google Scholar

    [20]

    Gallagher T F, Humphrey L M, Hill R W, Cooke W E, Edelstein S A 1977 Phys. Rev. A 15 1937Google Scholar

    [21]

    杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂 2017 66 093202Google Scholar

    Yang Z W, Jiao Y C, Han X X, Zhao J M, Jia S T 2017 Acta Phys. Sin. 66 093202Google Scholar

    [22]

    Osterwalder A, Merkt F 1999 Phys. Rev. Lett. 82 1831Google Scholar

    [23]

    李昌勇, 张临杰, 赵建明, 贾锁堂 2012 61 163202Google Scholar

    Li C Y, Zhang L J, Zhao J M, Jia S T 2012 Acta Phys. Sin. 61 163202Google Scholar

    [24]

    何兴虹, 李白文, 张承修 1989 38 1717Google Scholar

    He X H, Li B W, Zhang C X 1989 Acta Phys. Sin. 38 1717Google Scholar

    [25]

    Bai J D, Wang J Y, Liu S, He J, Wang J M 2018 arXiv:1811.05092v1 [physics.atom-ph]

  • 图 1  (a) 铯原子V型三能级系统, 318.6 nm紫外光将原子从6S1/2 (F = 4)基态激发到nP3/2 (n = 70—94)里德伯态, ${\varDelta_c}$为激发光相对跃迁频率的失谐量; 852.3 nm探测光频率锁定在6S1/2 (F = 4)—6P3/2 (F' = 5)超精细跃迁; (b)实验装置示意图; OI, 光隔离器; EOM, 带输入和输出尾纤的集成光波导型电光位相调制器; PBS, 偏振分束棱镜; BS, 分束片; DM, 双色片; DPD, 差分探测器; $\Omega $, EOM所加的射频调制信号

    Fig. 1.  (a) The V-type cesium three-level system; a 318.6 nm ultraviolet laser excited partial cesium atoms from 6S1/2 (F = 4) ground state to nP3/2 (n = 70–94) Rydberg state, where ${\varDelta_c}$ is the frequency detuning of pump laser; a 852.3 nm probe laser is locked to 6S1/2 (F = 4) –6P3/2 (F' = 5) hyperfine transition. (b) Schematic diagram of experimental setup. OI, optical isolator; EOM, fiber-pigtailed integration optical waveguide phase-type electro-optic modulator; PBS, polarization beam spliter cube; BS, beam spliter plate; DM, dichroic mirror; DPD, differential photo-diode; Ω, the radio-frequency modulated signal applied on EOM

    图 2  速度选择单光子跃迁铯原子71P3/2里德伯态的激发光谱. 852.3 nm探测光共振于6S1/2 (F = 4)—6P3/2 (F' = 5)跃迁线, 探测光功率为159 $\;{\text{μW}}$; 318.6 nm紫外激发光频率在6S1/2 (F = 4)—71P3/2态跃迁扫描, 功率为1.6 W; 激发光频率相对71P3/2态零失谐和蓝失谐671 MHz时, 出现两个透射信号, 分别对应速度组分为vz=0 (对应852.3 nm探测光的载频)和vz=213.94 m/s (对应852.3 nm探测光的 + 1级251 MHz射频调制边带)的铯原子被激发到71P3/2

    Fig. 2.  Velocity-selective spectra. The frequency of 852.3 nm probe beam is locked on the 6S1/2 (F = 4)—6P3/2 (F' = 5) transition and the light power is 159 $\;{\text{μW}}$; the 318.6 nm coupling beam is scanned over the transition of 6S1/2 (F = 4)—71P3/2 and the light power is 1.6 W. Two transmission peaks appeared when the frequency of the coupling beam resonated with the 6S1/2 (F = 4)—71P3/2 transition line or blue detuning of 671 MHz, corresponding to atoms which have velocity of vz = 0 (corresponding to the carrier of 852.3 nm probe beam) and vz = 213.94 m/s (corresponding to the +1 order 251 MHz radio-frequency modulation component of 852.3 nm probe beam) are excited to 71P3/2 Rydberg state, respectively.

    图 3  铯原子nP3/2 (n = 50—100)里德伯态量子亏损随主量子数n的变化. 量子亏损随着主量子数n增加而缓慢减小

    Fig. 3.  The theory values of quantum defects for cesium nP3/2 (n = 50–100) Rydberg states. Quantum defect is decreasing with increasing of the principal quantum number n.

    图 4  铯原子nP3/2 (n = 70—94)态的量子亏损计算值与实验直接测量值的对比. 其中红色圆点为计算值, 黑色方块为实验直接测量值; 随着主量子数n的增加, 计算值近乎不变, 而实验直接测量值却是增加的. 这一趋势表明有一些影响因素必须要考虑, 去修正直接实验测量得到的铯原子nP3/2 (n = 70—94)里德伯态的量子亏损值

    Fig. 4.  Comparison of direct experimentally measured data with calculated values of quantum defects for cesium nP3/2 (n = 70—94) Rydberg states. The red dots are calculated values and the black cubes are direct experimentally measured data. When the principal quantum number n increasing, the calculated values are almost constant, but the direct experimentally measured data are increasing obviously. This variation trend indicate that some influence factors should be took into account to correct the direct experimentally measured data.

    图 5  (a) 利用估算的残余直流电场对量子亏损直接实验测量值进行修正, 根据Stark频移量和有效主量子数n*的关系, 拟合得到了作用于铯原子气室中的残余直流电场约为 (31 ± 2) mV/cm; (b) 修正Stark效应及波长计测量误差的影响后, 铯原子nP3/2(n = 70—94)态量子亏损的实验测量修正值约3.5591 ± 0.0007; 实验数据与计算值相吻合

    Fig. 5.  (a) Using the estimated residual DC electric field to correct the direct experimentally measured data, according to the relationship between Stark shift and effective principal quantum number n*, the magnitude of the residual DC electric field acting on the cesium atomic vapor cell is ~(31 ± 2) mV/cm; (b) after correction of the impact of Stark effect and the measurement error of wavemeter, the corrected experimentally measured quantum defect value of cesium nP3/2 (n = 70—94) states is ~(3.5591 ±0.0007). This corrected result is consistent with the theoretically calculated value.

    表 1  铯原子高激发nP3/2 (n = 70—94)里德伯态的极化率

    Table 1.  Polarizability of highly-excited Cs nP3/2 (n = 70—94) Rydberg states.

    Principal quantum numberPolarizability/MHz/(V/cm)2Principal quantum numberPolarizability/MHz/(V/cm)2
    7015730.18354913.3
    7117463.08459935.9
    7219356.98565347.2
    7321424.38671172.0
    7423678.28777436.3
    7526132.38884167.3
    7628801.28991393.7
    7731700.59099145.6
    7834846.491107454.3
    7938256.292116352.9
    8041948.193125875.7
    8145941.394136058.9
    8250255.9--
    下载: 导出CSV
    Baidu
  • [1]

    Gallagher T F1994 Rydberg Atoms (Cambridge: Cambridge University Press) p12

    [2]

    Zimmerman M L, Littman M G, Kash M M, Kleppner D 1979 Phys. Rev. A 20 2251Google Scholar

    [3]

    Sedlacek J A, Schwettmann A, Kübler H, Shaffer J P 2013 Phys. Rev. Lett. 111 063001Google Scholar

    [4]

    Carter J D, Cherry O, Martin J D D 2012 Phys. Rev. A 86 053401Google Scholar

    [5]

    Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T, Shaffer J P 2012 Nature Phys. 8 819Google Scholar

    [6]

    Zhao B, Müller M, Hammerer K, Zoller P 2010 Phys. Rev. A 81 052329Google Scholar

    [7]

    Wilk T, Gaëtan A, Evellin C, Wolters J, Miroshnychenko Y, Grangier P, Browaeys A 2010 Phys. Rev. Lett. 104 010502Google Scholar

    [8]

    Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, Saffman M 2010 Phys. Rev. Lett. 104 010503Google Scholar

    [9]

    Saffman M, Walker T G, Mølmer K 2010 Rev. Mod. Phys. 82 2313Google Scholar

    [10]

    Urban E, Johnson T A, Henage T, Isenhower L, Yavuz D D, Walker T G, Saffman M 2009 Nature Phys. 5 110Google Scholar

    [11]

    Gaëtan A, Miroshnychenko Y, Wilk T, Chotia A, Viteau M, Comparat D, Pillet P, Browaeys A, Grangier P 2009 Nature Phys. 5 115Google Scholar

    [12]

    Hankin A M, JauY Y, Parazzoli L P, Chou C W, Armstrong D J, Landahl A J, Biedermann G W 2014 Phys. Rev. A 89 033416Google Scholar

    [13]

    Dudin Y O, Kuzmich A 2012 Science 336 887Google Scholar

    [14]

    Keating T, Goyal K, Jau Y Y, Biedermann G W, Landahl A J, Deutsch I H 2013 Phys. Rev. A 87 052314Google Scholar

    [15]

    Wang J Y, Bai J D, He J, Wang J M 2016 J. Opt. Soc. Am. B 33 2020

    [16]

    Lorenzen C J, Niemax K 1984 Z. Phys. A: Atoms and Nuclei 315 127Google Scholar

    [17]

    Li W H, Mourachko I, Noel M W, Gallagher T F 2003 Phys. Rev. A 67 052502Google Scholar

    [18]

    Wang J Y, Bai J D, He J, Wang J M 2017 Opt. Express 25 22510Google Scholar

    [19]

    Baugh J F, Ciocca M, Edmonds D A, Nellesen P T, Burkhardt C E, Leventhal J J 1996 Phys. Rev. A 54 R4641Google Scholar

    [20]

    Gallagher T F, Humphrey L M, Hill R W, Cooke W E, Edelstein S A 1977 Phys. Rev. A 15 1937Google Scholar

    [21]

    杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂 2017 66 093202Google Scholar

    Yang Z W, Jiao Y C, Han X X, Zhao J M, Jia S T 2017 Acta Phys. Sin. 66 093202Google Scholar

    [22]

    Osterwalder A, Merkt F 1999 Phys. Rev. Lett. 82 1831Google Scholar

    [23]

    李昌勇, 张临杰, 赵建明, 贾锁堂 2012 61 163202Google Scholar

    Li C Y, Zhang L J, Zhao J M, Jia S T 2012 Acta Phys. Sin. 61 163202Google Scholar

    [24]

    何兴虹, 李白文, 张承修 1989 38 1717Google Scholar

    He X H, Li B W, Zhang C X 1989 Acta Phys. Sin. 38 1717Google Scholar

    [25]

    Bai J D, Wang J Y, Liu S, He J, Wang J M 2018 arXiv:1811.05092v1 [physics.atom-ph]

  • [1] 张学超, 乔佳慧, 刘瑶, 苏楠, 刘智慧, 蔡婷, 何军, 赵延霆, 王军民. 基于里德伯原子天线的低频电场波形测量.  , 2024, 73(7): 070201. doi: 10.7498/aps.73.20231778
    [2] 刘智慧, 刘逍娜, 何军, 刘瑶, 苏楠, 蔡婷, 杜艺杰, 王杰英, 裴栋梁, 王军民. 里德伯原子幻零波长.  , 2024, 73(13): 130701. doi: 10.7498/aps.73.20240397
    [3] 王勤霞, 王志辉, 刘岩鑫, 管世军, 何军, 张鹏飞, 李刚, 张天才. 腔增强热里德伯原子光谱.  , 2023, 72(8): 087801. doi: 10.7498/aps.72.20230039
    [4] 白健男, 韩嵩, 陈建弟, 韩海燕, 严冬. 超级里德伯原子间的稳态关联集体激发与量子纠缠.  , 2023, 72(12): 124202. doi: 10.7498/aps.72.20222030
    [5] 刘瑶, 何军, 苏楠, 蔡婷, 刘智慧, 刁文婷, 王军民. 用于铯原子里德伯态激发的509 nm波长脉冲激光系统.  , 2023, 72(6): 060303. doi: 10.7498/aps.72.20222286
    [6] 吴逢川, 林沂, 武博, 付云起. 里德伯原子的射频脉冲响应特性.  , 2022, 71(20): 207402. doi: 10.7498/aps.71.20220972
    [7] 沈星晨, 刘洋, 陈淇, 吕航, 徐海峰. 超快强激光场中原子分子的里德伯态激发.  , 2022, 71(23): 233202. doi: 10.7498/aps.71.20221258
    [8] 计彦强, 王洁, 刘颖莉, 张大伟, 肖瑞杰, 董莉, 修晓明. 基于里德伯超级原子快速制备三粒子单重态.  , 2021, 70(12): 120301. doi: 10.7498/aps.70.20201841
    [9] 李晓康, 贾凤东, 余方晨, 李明阳, 薛平, 许祥源, 钟志萍. 一价镧离子高n里德伯态.  , 2019, 68(4): 043201. doi: 10.7498/aps.68.20181980
    [10] 张秦榕, 王彬彬, 张孟龙, 严冬. 稀薄里德伯原子气体中的两体纠缠.  , 2018, 67(3): 034202. doi: 10.7498/aps.67.20172052
    [11] 裴栋梁, 何军, 王杰英, 王家超, 王军民. 铯原子里德伯态精细结构测量.  , 2017, 66(19): 193701. doi: 10.7498/aps.66.193701
    [12] 常鑫鑫, 沈礼, 武晓瑞, 戴长建. Eu原子4f76snlRydberg态的研究.  , 2017, 66(9): 093201. doi: 10.7498/aps.66.093201
    [13] 陶汝茂, 周朴, 王小林, 司磊, 刘泽金. 高功率全光纤结构主振荡功率放大器中模式不稳定现象的实验研究.  , 2014, 63(8): 085202. doi: 10.7498/aps.63.085202
    [14] 蒋利娟, 张现周, 贾光瑞, 张永慧, 夏立华. 啁啾微波场中里德伯锂原子的相干激发与控制.  , 2013, 62(1): 013101. doi: 10.7498/aps.62.013101
    [15] 孙江, 刘鹏, 孙娟, 苏红新, 王颖. 双光子共振非简并四波混频测量钡原子里德伯态碰撞展宽中的伴线研究.  , 2012, 61(12): 124205. doi: 10.7498/aps.61.124205
    [16] 孙江, 孙娟, 王颖, 苏红新. 双光子共振非简并四波混频测量Ba原子里德伯态的碰撞展宽和频移.  , 2012, 61(11): 114214. doi: 10.7498/aps.61.114214
    [17] 蒋利娟, 张现周, 马欢强, 贾光瑞, 张永慧, 夏立华. 啁啾微波场中里德伯钠原子高激发态的布居跃迁.  , 2012, 61(4): 043101. doi: 10.7498/aps.61.043101
    [18] 孙 江, 左战春, 郭庆林, 王英龙, 怀素芳, 王 颖, 傅盘铭. 应用双光子共振非简并四波混频测量Ba原子里德伯态.  , 2006, 55(1): 221-225. doi: 10.7498/aps.55.221
    [19] 吴晓丽, 苟秉聪, 刘义东. 氦原子单激发和双激发态里德伯系列的相对论能量计算.  , 2004, 53(1): 48-53. doi: 10.7498/aps.53.48
    [20] 戴长建, 舒晓武, 郦菁, 张森, 方达渭. Yb原子里德伯态及价态的场电离阈.  , 1995, 44(5): 678-684. doi: 10.7498/aps.44.678
计量
  • 文章访问数:  8715
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-27
  • 修回日期:  2019-01-29
  • 上网日期:  2019-03-23
  • 刊出日期:  2019-04-05

/

返回文章
返回
Baidu
map