-
本文研究了人工规范场调控下超导量子比特-SSH拓扑光子晶格耦合体系中的单光子散射。通过解析计算单光子散射系数,本文揭示了人工规范场对SSH拓扑晶格上下能带中的单光子散射具有完全不同的调控作用,包括上能带全透射和下能带全反射。其次,本文进一步证明人工规范场调控下单光子散射相对于晶格动量和上下能带具有高度的对称性。反过来,本文还发现人工规范场调控下单光子反射系数可以不依赖晶格耦合强度,只依赖晶格的拓扑特性,可用于探测光子晶格的拓扑不变量。最后,本文还将人工规范场调控下的单光子散射推广至超导量子比特-拓扑光子晶格不同耦合构型中。这些结果为拓扑光子晶格中光子输运的调控提供了新的视角和方法。We investigate the control mechanisms of single-photon scattering in a hybrid system consisting of superconducting qubits coupled to an SSH (Su-Schrieffer-Heeger) topological photonic lattice under the influence of an artificial gauge field. This research is driven by the growing interest at the intersection of quantum optics and condensed matter physics, particularly in the realm of topological quantum optics, where the robustness of photon transport against defects and impurities can be exploited for quantum information processing. To achieve this, we develop a theoretical model that incorporates the phase of the artificial gauge field into the coupling between superconducting qubits and the SSH photonic lattice. Using the probability-amplitude method, we analytically derive expressions for the reflection and transmission amplitudes of single photons. Our results show that the artificial gauge field can effectively control single photon scattering in both the upper and lower energy bands of the SSH lattice, enabling total transmission in the upper band and total reflection in the lower band. This band-dependent scattering behavior exhibits a high degree of symmetry with respect to the lattice momentum and energy bands. Importantly, the reflection coefficient can be made independent of the lattice coupling strength and depends solely on the topological properties of the lattice. This finding suggests a robust method for detecting topological invariants in photonic lattices. Furthermore, we extend our analysis to various coupling configurations between superconducting qubits and the photonic lattice, highlighting the versatility of the artificial gauge field in manipulating photon transport. These findings not only provide new insights into the control of photon transport in topological photonic lattices but also open the door to the development of novel quantum optical devices and robust quantum information processing platforms.
-
Keywords:
- Single-photon scattering /
- Superconducting qubits /
- Topology
-
[1] Sheremet A S, Petrov M I, Iorsh I V, Poshakinskiy A V, Poddubny A N 2023Rev. Mod. Phys. 95 015002
[2] Mehrabad M J, Mittal S, Hafezi M 2023Phys. Rev. A 108 040101
[3] Yan Q, Hu X, Fu Y, Lu C, Fan C, Liu Q, Feng X, Sun Q, Gong Q 2021Adv. Opt. Mater. 9 2001739
[4] Lumer Y, Bandres M A, Heinrich M, Maczewsky L J, Herzig-Sheinfux H, Szameit A, Segev M 2019Nat. Photonics 13 339
[5] Zhou L, Gong Z R, Liu Y, Sun C P, Franco N 2008Phys. Rev. Lett. 101 100501
[6] Zhou L, Yang L P, Li Y, Sun C P 2013Phys. Rev. Lett. 111 103604
[7] Kannan B, Almanakly A, Sung Y, Paolo A D, Rower D A, Braumülleret J, Melville A, Niedzielski B M, Karamlou A, Serniak K, Vepsäläinen A, Schwartz M E, Yoder J L, Winik R, Wang J I J, Orlando T P, Gustavsson S, Grover J A, Oliver W D 2023Nat. Phys. 19 394
[8] Xu H S, Jin L 2022Phys. Rev. Res. 4 L032015
[9] Xu H S, Jin L 2023Phys. Rev. Res. 5 L042005
[10] Zhou L, Dong H, Liu Y, Sun C P, Nori F 2008Phys. Rev. A 78 063827
[11] Liao J Q, Huang J F, Liu Y, Kuang L M, Sun C P 2009Phys. Rev. A 80 014301
[12] Liao J Q, Gong Z R, Zhou L, Liu Y, Sun C P, Nori F 2010Phys. Rev. A 81 042304
[13] Zhou L, Kuang L M 2010Phys. Rev. A 82 042113
[14] Liao J Q, Cheung H K, Law C K 2012Phys. Rev. A 85 025803
[15] Zhou L, Chang Y, Dong H, Kuang L M, Sun C P 2012Phys. Rev. A 85 013806
[16] Liao J Q, Law C K 2013Phys. Rev. A 87 043809
[17] Wang Z H, Zhou L, Li Y, Sun C P 2014Phys. Rev. A 89 053813
[18] Xu X W, Chen A X, Li Y, Liu Y 2017 Phys. Rev. A 95 063808
[19] Jin L 2018 Phys. Rev. A 98 022117
[20] Wang Z, Du L, Li Y, Liu Y 2019 Phys. Rev. A 100 053809
[21] Jin L, Song Z 2021Chinese Phys. Lett. 38 024202
[22] Nie W, Shi T, Nori F, Liu Y 2021Phys. Rev. Appl. 15 044041
[23] Yin X L, Liu Y H, Huang J F, Liao J Q 2022Phys. Rev. A 106 013715
[24] Tang J S, Nie W, Tang L, Chen M, Su X, Lu Y, Nori F, Xia K 2022Phys. Rev. Lett. 128 203602
[25] Zhou J, Yin X L, Liao J Q 2023Phys. Rev. A 107 063703
[26] Xu H S, Jin L 2023Phys. Rev. Res. 5 L042005
[27] Xu H S, Jin L 2024Phys. Rev. Res. 6 L022006
[28] Bello M, Platero G, Cirac J I, González-Tudela A 2019Sci. Adv. 5 eaaw0297
[29] Kim E, Zhang X, Ferreira V S, Banker J, K. Iverson J, Sipahigil A, Bello M, González-Tudela A, Mirhosseini M, Painter O 2021Phys. Rev. X 11 011015
[30] Joshi C, Yang F, Mirhosseini M 2023Phys. Rev. X 13 021039
[31] Cheng W, Wang Z, Liu Y 2022Phys. Rev. A 106 033522
计量
- 文章访问数: 29
- PDF下载量: 2
- 被引次数: 0