-
本文在包含两模光场、N个原子以及机械振子的耦合光机械腔中,从理论上探讨了光与原子以及光与机械振子的相互作用引起的量子相变。采用Holstein-Primakoff变换法,假设了新的平移玻色算符和四个参量,给出了系统的基态能量泛函和四个参量之间的关系,通过两个特例证明了假设的平移玻色算符的正确性。在共振情况下有正常相到超辐射相的相变,调控两腔光场的耦合强度可以改变相变点。当考虑辐射压力产生的非线性光子-声子相互作用时,系统的相图由原来的两个相区扩展为三个相区,包括正常相和超辐射相的共存区,双稳的超辐射相区,以及不稳定的真空宏观相区。同时,还出现了一条转折点曲线,该曲线与相变点曲线有重叠区域,表明了系统中存在多重量子相变。这些相变现象可以通过测量平均光子数来检测。当不考虑两模光场的耦合作用时回到旋波近似的Dicke模型的量子相变。
-
关键词:
- 耦合光机械腔 /
- Holstein-Primakoff变换 /
- 光场耦合强度 /
- 双稳超辐射相
In this paper, the quantum phase transitions caused by the interaction between light and atom and light and mechanical oscillator are discussed theoretically in a coupled optomechanical cavity containing two modes of light field, N atoms and mechanical oscillator. By using Holstein-Primakoff transformation method, new translational boson operators and four parameters are assumed. The ground state energy functional of the system and a set of equations composed of four parameters are given. The correctness of the assumed translation boson operators is proved by two special cases. In the case of resonance, the characteristics of the obtained solutions are shown by solving the equations, graphical method and Hessian matrix judgment. The stable zero solution is called the normal phase, the unstable zero solution is called the unstable vacuum macroscopic phase, and the stable non-zero solution is called the superradiation phase. The phase transition is from normal phase to superradiation phase, and the point of phase transition can be changed by adjusting the coupling intensity of the two cavity light fields. When the nonlinear photon-phonon interaction caused by radiation pressure is considered, the phase diagram of the system is expanded from the original two phase regions to three phase regions, including the coexistence of the normal phase and the superradiation phase, the bistable superradiation phase, and the unstable vacuum macroscopic phase region, where the bistable superradiation phase is similar to the optical bistable phenomenon. At the same time, there is also a turning point curve, which overlaps with the phase transition point curve, indicating the existence of multiple quantum phase transitions in the system. These predictions can be detected by measuring the average number of photons. The coupled optomechanical cavity we studied, when considering the coupling of the two-mode optical field and the atomic ensemble without considering the mechanical oscillator, reflects the interaction between the two-mode optical field and the atom, and obtains the conclusion that the transformation point is small and the quantum phase change is easy to occur. When the coupling between the mechanical oscillator and the two-mode optical field is not considered, the interaction between the single-mode optical field and the atom is reflected, and the quantum phase transition of the Dicke model with rotating wave approximation is returned.-
Keywords:
- coupled optomechanical cavity /
- Holstein-Primakoff transformation /
- coupling intensity of the light fields /
- bistable superradiation phase
-
[1] Dicke R H 1954Phys. Rev. 93 99
[2] Wang Y K, Hioe F T 1973Phys. Rev. A. 7 831
[3] Hioe F T 1973Phys. Rev. A 8 1440
[4] Vojta M 2003Rep. Prog. Phys. 662069
[5] Brennecke F, Donner T, Ritter S, Bourdel T, Köhl M, Esslinger T 2007Nature 450 268-271
[6] Colombe Y, Steinmetz T, Dubois G, Linke F, Hunger D, Reichel J 2007Nature 450 272-276
[7] Baumann K, Guerlin C, Brennecke F, Esslinger T 2010Nature 464 1301-1306
[8] Baumann K, Mottl R, Brennecke F, Esslinger T 2011Phys. Rev. Lett. 107 140402
[9] Das P, Bhakuni D S, Sharma A 2023Phys. Rev. A 107 043706
[10] Shen L T, Pei X T, Shi Z C, Yang Z B 2024Eur. Phys. J. D 78 91
[11] LuoY Q, Liu N, Liang J Q 2024Phys. Rev. A 110063320
[12] Qin W, Zheng D C, Wu Z D , Chen Y H, Liao R Y 2024Phys. Rev. A 109 013310
[13] Zhao X Q, Zhang W H, Wang H M 2024Acta Phys. Sin. 73 160302(in Chinese) [赵秀琴,张文慧,王红梅2024 73 160302]
[14] Zhao X Q, Zhang W H. 2024Acta Phys. Sin. 73 240301(in Chinese) [赵秀琴,张文慧2024 73240301]
[15] Wang B, Nori F, Xiang Z L 2024 Phys. Rev. Lett. 132 053601
[16] Samanta A, Jana P C 2023 Journal of Optics 52 494–503
[17] Li, L C, Zhang, J Q 2021Photonics 8 588
[18] Lan Z L, Chen Y W, Cheng L Y, Chen L, Ye S Y, Zhong Z R 2024 Quantum Information Processing 23 72
[19] Zhao X Q, Liu N, Bai X M, Liang J Q 2017 Ann. Phys. 378448
[20] Bai C H, Wang D Y, Wang H F, Zhu A D, Zhang S 2016Scientific Reports 6 33404
[21] Nejad A A, Askari H R, Baghshahi H R 2017Applied Optics 56 2816-2820
[22] Huang S, Liu N, Liang J Q, Li H B 2021Phys. Scr. 96 095801
[23] Lian J L, Liu N, Liang J Q, Chen G, Jia S T 2013Phys. Rev. A 88043820
[24] Clive E and Tobias B 2003 Phys. Rev. E 67 066203
[25] Chen G, Li J Q, Liang J Q 2006 Phys. Rev. A 74054101
[26] Wang Z M, Lian J L, Liang J Q, Yu Y M, Liu W M 2016 Phys. Rev. A 93 033630
[27] Huang B, Yu J L, Wang W R, Wang J, Xue J Q, Yu Y, Jia S, Yang E Z 2015 Acta Phys. Sin. 64 044204(in Chinese) [黄标,于晋龙,王文睿,王菊,薛纪强,于洋,贾石,杨恩泽2015 64 044204]
[28] Liu Y W, Zhao H, Wang Y H 1999Acta Phys. Sin. 48198(in Chinese) [刘要稳,赵鸿,汪映海1999 48198]
计量
- 文章访问数: 57
- PDF下载量: 6
- 被引次数: 0