-
量子柴郡猫效应是量子力学中的一种重要现象,它揭示物理属性与载体的可分离性,突破了经典物理中属性必须依附于物体的固有框架,为量子信息与量子精密测量提供了新视角.本研究基于量子柴郡猫效应,通过前选择过程制备了一个由两个粒子组成的spin-1 2原子系统的前选态.本研究对这些粒子的自旋和位置进行了量子弱测量,并随后实施了策略性的后选择.在本研究的后选择过程中,设计了两个不同的后选态.完成弱测量的粒子会沿着不同的路径演化,最终达到不同的后选态。其中一个后选态导致最终测量结果表明两个粒子的自旋发生了交换并得到了放大;而另一个后选态则使得两个粒子即使经历了弱测量,其状态仍然与测量前保持一致.本研究从理论上证实了费米子系统在两体量子柴郡猫效应中的可行性,并展示了延迟选择如何影响spin-12原子系统的量子柴郡猫效应.The quantum Cheshire cat effect is an important phenomenon in quantum mechanics that reveals the separability of physical properties from their carriers. This effect transcends the classical framework whose attributes must be inherently attached to objects, providing new perspectives for quantum information and precision measurement. Based on the quantum Cheshire cat effect, we prepare a pre-selected state of a spin-1/2 atomic system composed of two particles through a pre-selection process. We conduct quantum weak measurements on the spins and positions of these two atoms and extract weak values using the method of imaginary time evolution (ITE)(Fig.(1)). Subsequently, we perform post-selection on these two atoms, designing two distinct post-selected states. Initially, we calculate analytical solutions when both atoms encounter these two different post-selected states separately. Then, during the stage of obtaining weak values via ITE, we first discuss the scenario with only one post-selected state. In this case, our experimental goal is to achieve spin exchange between the two atoms. We apply ITE to obtain normalized coincidence rate for the system. By performing linear fitting on these normalized coincidence rate, we derive numerical solutions for the system’s weak values. A comparison between analytical and numerical solutions indicates that they are in close agreement, demonstrating that our method facilitates spin exchange between the two atoms. Next, we examine scenarios involving both post-selected states during post-selection. After completing weak measurements on particles, delayed-choice allows them to evolve along different paths ultimately leading to distinct post-selected states. One particular post-selected state resulted in final measurement outcomes indicates that spin exchange occurs between both particles with amplification. Conversely, the other post-selected state ensures that, even after undergoing weak measurement and delayed-choice, the states of the two particles remain consistent with their pre-measurement conditions. We also compare the analytical and numerical solutions of the experiment involving delayedchoice and find them to be largely consistent. This consistency indicates that delayed-choice indeed has a significant impact on whether the final exchange occurs. Our research theoretically confirms the feasibility of fermionic systems within bipartite quantum Cheshire cat effects and illustrates how delayed-choice influences quantum Cheshire cat effects in spin- 1/2 atomic systems
-
Keywords:
- quantum information /
- Weak value /
- quantum Cheshire cat
-
[1] Aharonov Y, Popescu S, Rohrlich D, Skrzypczyk P 2013 New J. Phys. 15113015
[2] Denkmayr T, Geppert H, Sponar S, Lemmel H, Matzkin A, Tollaksen J, Hasegawa Y 2014 Nat. Commun. 54492
[3] Danner A, Geerits N, Lemmel H, Wagner R, Sponar S, Hasegawa Y 2024 Commun. Phys. 714
[4] Kim Y, Im D G, Kim Y S, Han S W, Moon S, Kim Y H, Cho Y W 2021 npj. Quantum. Inf. 713
[5] Das D, Sen U 2021 Phys. Rev. A 103012228
[6] Richter M, Dziewit B, Dajka J 2018 Adv. Math. Phys. 20187060586
[7] Li J K, Sun K, Wang Y, Hao Z Y, Liu Z H, Zhou J, Fan X Y, Chen J L, Xu J S, Li C F, Guo G C 2023 Light Sci. Appl. 1218
[8] Wagner R, Kersten W, Lemmel H, Sponar S, Hasegawa Y 2023 Sci. Rep. 133865
[9] Ghoshal A, Sau S, Das D, Sen U 2023 Phys. Rev. A 107052214
[10] Hance J R, Ladyman J, Rarity J 2024 New J. Phys. 26073038
[11] Das D, Pati A K 2020 New J. Phys. 22063032
[12] Liu Z H, Pan W W, Xu X Y, Yang M, Zhou J, Luo Z Y, Sun K, Chen J L, Xu J S, Li C F, Guo G C 2020 Nat. Commun. 113006
[13] Aharonov Y, Albert D Z, Vaidman L 1988 Phys. Rev. Lett. 601351
[14] Ritchie N W M, Story J G, Hulet R G 1991 Phys. Rev. Lett. 661107
[15] Bloch I, Zoller P 2006 New J. Phys. 8 E02
[16] Puentes G 2015 J. Phys. B. 48245301
[17] Mao Y, Chaudhary M, Kondappan M, Shi J, Ilo-Okeke E O, Ivannikov V, Byrnes T 2023 Phys. Rev. Lett. 131110602
[18] Aharonov Y, Bergmann P G, Lebowitz J L 1964 Phys. Rev. 134 B1410
[19] Wheeler J A 1978 In Mathematical foundations of quantum theory (Elsevier), pp 9–48
[20] Witten E 2018 Rev. Mod. Phys. 90045003
[21] Amico L, Fazio R, Osterloh A, Vedral V 2008 Rev. Mod. Phys. 80517
[22] Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81865
[23] Wick G C 1954 Phys. Rev. 961124
[24] Landsman N, van Weert C 1987 Phys. Rep. 145141
[25] Xu J S, Sun K, Han Y J, Li C F, Pachos J K, Guo G C 2016 Nat. Commun. 713194
[26] Dressel J, Malik M, Miatto F M, Jordan A N, Boyd R W 2014 Rev. Mod. Phys. 86307
计量
- 文章访问数: 22
- PDF下载量: 0
- 被引次数: 0