搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强耦合光机械腔中的简正模式分裂和冷却

陈华俊 米贤武

引用本文:
Citation:

强耦合光机械腔中的简正模式分裂和冷却

陈华俊, 米贤武

Normal mode splitting and cooling in strong coupling optomechanical cavity

Chen Hua-Jun, Mi Xian-Wu
PDF
导出引用
  • 研究由辐射压力与驱动Fabry-Perot光学腔相耦合而产生的腔光机械动力学行为. 通过量子朗之万方程具体研究了机械振子的涨落光谱、机械阻尼与共振频移和基态冷却. 随着输入激光功率的增加,振子的涨落光谱呈现简正模式分裂的现象,并且数值模拟结果和实验结果相符合. 同时推导了有效机械阻尼和共振频移. 红移边带导致了机械模的冷却,蓝移边带引起了机械模的放大. 此外,引入一种近似机制来研究振子的基态冷却,并且考虑在解析边带机制下简正模式分裂对机械振子冷却的影响. 最后,数值讨论了初始浴温度、输入激光功率和机械品质因数这三个因素对机械振子冷却的影响.
    A model describing optomechanical dynamics via radiation-pressure coupling with a driven optical cavity is investigated by a linearized quantum Langevin equation. The spectrum of the oscillator presents normal mode splitting with the increase of the input laser power in strong coupling regime and our results are in good agreement with the experimental results. The effective mechanical damping and the resonance frequency shift are derived. The redshifted sideband leads to the cooling of the mechanical oscillator, and the blueshifted motional sideband results in amplification. Furthermore, an approximate mechanism is introduced to analyze the cooling of the mechanical oscillator. Since both the normal mode splitting and cooling require working in the resolved sideband regime, whether the normal mode splitting influences the cooling of the mirror is considered. Meanwhile, we give three key factors influencing the cooling of mechanical oscillator, these being initial bath temperature, input laser power and mechanical quality factor.
    • 基金项目: 国家自然科学基金(批准号:10647132)和湖南省教育厅科研基金(批准号:10A100)资助的课题.
    [1]

    Aspelmeyer M, Groblacher S, Hammerer K, Kiesel N 2010 J. Opt. Soc. Am. B 27 A189

    [2]

    La Haye M D, Buu O, Camarota B, Schwab K C 2004 Science 304 74

    [3]
    [4]

    Ekinci K L, Yang Y T, Roukes M L 2004 J. Appl. Phys. 95 2682

    [5]
    [6]
    [7]

    Caves C M 1980 Phys. Rev. Lett. 45 75

    [8]

    Schwab K C, Roukes M L 2005 Phys. Today 58 36

    [9]
    [10]

    Leggett A J 2002 J. Phys: Condens. Matter 14 R415

    [11]
    [12]
    [13]

    Marshall W, Simon C, Penrose R, Bouwmeester D 2003 Phys. Rev. Lett. 91 130401

    [14]

    Kippenberg T J, Vahala K J 2008 Science 321 1172

    [15]
    [16]
    [17]

    Gigan S, Bhm H R, Paternostro M, Blaser F, Langer G, Hertzberg J B, Schwab K C, Bauerle D, Aspelmeyer M, Zeilinger A 2006 Nature 444 67

    [18]

    Kleckner D, Bouwmeester D 2006 Nature 444 75

    [19]
    [20]
    [21]

    Poggio M, Degen C L, Mamin H J, Rugar D 2007 Phys. Rev. Lett. 99 017201

    [22]

    Arcizet O, Cohadon P F, Briant T, Pinard M, Heidmann A 2006 Nature 444 71

    [23]
    [24]

    Bhattacharya M, Meystre P 2007 Phys. Rev. Lett. 99 073601

    [25]
    [26]
    [27]

    Schliesser A, Del'Haye P, Nooshi N, Vahala K L, Kippenberg T J 2006 Phys. Rev. Lett. 97 243905

    [28]
    [29]

    Wilson-Rae I, Nooshi N, Zwerger W, Kippenberg T J 2007 Phys. Rev. Lett. 99 093901

    [30]

    Marquardt F, Chen J P, Clerk A, Girvin S M 2007 Phys. Rev. Lett. 99 093902

    [31]
    [32]
    [33]

    Ma R, Schliesser A, Del'Haye P, Dabirian A, Anetsberger G, Kippenberg T J 2007 Opt. Lett. 32 2200

    [34]
    [35]

    Thompson J D, Zwickl B M, Jayich A M, Marquardt F, Girvin S M, Harris J G E 2008 Nature 452 72

    [36]
    [37]

    Wilson-Rae I, Nooshi N, Dobrindt J, Kippenberg T J, Zwerger W 2008 New J. Phys. 10 095007

    [38]

    Metzger C H, Karrai K 2004 Nature 432 1002

    [39]
    [40]

    Corbitt T, Chen Y, Innerhofer E, Muller-Ebhardt H, Ottaway D, Rehbein H, Sigg D, Whitcomb S, Wipf C, Mavalvala N 2007 Phys. Rev. Lett. 98 150802

    [41]
    [42]
    [43]

    Schliesser A, Riviere R, Anetsberger G, Arcizet O, Kippenberg T J 2008 Nat. Phys. 4 415

    [44]
    [45]

    Park Y S, Wang H L 2009 Nat. Phys. 5 489

    [46]
    [47]

    Li Y, Wang Y D, Xue F, Bruder C 2008 Phys. Rev. B 78 134301

    [48]

    Tian L 2009 Phys. Rev. B 79 193407

    [49]
    [50]
    [51]

    Grlacher S, Hammerer K, Vanner M R, Aspelmeyer M 2009 Nature 460 724

    [52]

    Dobrindt J M, Wilson-Rae I, Kippenberg T J 2008 Phys. Rev. Lett. 101 263602

    [53]
    [54]

    Huang S M, Agarwal G S 2009 Phys. Rev. A 80 033807

    [55]
    [56]

    Paternostro M, Gigan S, Kim M S, Blaser F, Bohm H R, Aspelmeyer M 2006 New J. Phys. 8 107

    [57]
    [58]

    Gardiner C W, Zoller P 1991 Quantum Noise (Berlin: Springer-Verlag) p50

    [59]
    [60]
    [61]

    Giovannetti V, Vitali D 2001 Phys. Rev. A 63 023812

    [62]
    [63]

    Walls D F, Milburn G J 1994 Quantum Optics (Berlin: Springer) p296

    [64]
    [65]

    DeJesus E X, Kaufman C 1987 Phys. Rev. A 35 5288

    [66]

    Teufel J D, Regal C A, Lehnert K W 2008 New J. Phys. 10 095002

    [67]
    [68]
    [69]

    Genes C, Vitali D, Tombesi P, Gigan S, Aspelmeyer M 2008 Phys. Rev. A 77 033804

    [70]

    Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M, Schoelkopf R J 2004 Nature 431 162

    [71]
    [72]
    [73]

    Thompson R J, Rempe G, Kimble H J 1992 Phys. Rev. Lett. 68 1132

    [74]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633

    [75]
    [76]
    [77]

    Corbitt T, Wipf C, Bodiya T, Ottaway D, Sigg D, Smith N, Whitcomb S, Mavalvala N 2007 Phys. Rev. Lett. 99 160801

    [78]

    Verlot P, Tavernarakis A, Briant T, Cohadon P F, Heidmann A 2010 Phys. Rev. Lett. 104 133602

    [79]
  • [1]

    Aspelmeyer M, Groblacher S, Hammerer K, Kiesel N 2010 J. Opt. Soc. Am. B 27 A189

    [2]

    La Haye M D, Buu O, Camarota B, Schwab K C 2004 Science 304 74

    [3]
    [4]

    Ekinci K L, Yang Y T, Roukes M L 2004 J. Appl. Phys. 95 2682

    [5]
    [6]
    [7]

    Caves C M 1980 Phys. Rev. Lett. 45 75

    [8]

    Schwab K C, Roukes M L 2005 Phys. Today 58 36

    [9]
    [10]

    Leggett A J 2002 J. Phys: Condens. Matter 14 R415

    [11]
    [12]
    [13]

    Marshall W, Simon C, Penrose R, Bouwmeester D 2003 Phys. Rev. Lett. 91 130401

    [14]

    Kippenberg T J, Vahala K J 2008 Science 321 1172

    [15]
    [16]
    [17]

    Gigan S, Bhm H R, Paternostro M, Blaser F, Langer G, Hertzberg J B, Schwab K C, Bauerle D, Aspelmeyer M, Zeilinger A 2006 Nature 444 67

    [18]

    Kleckner D, Bouwmeester D 2006 Nature 444 75

    [19]
    [20]
    [21]

    Poggio M, Degen C L, Mamin H J, Rugar D 2007 Phys. Rev. Lett. 99 017201

    [22]

    Arcizet O, Cohadon P F, Briant T, Pinard M, Heidmann A 2006 Nature 444 71

    [23]
    [24]

    Bhattacharya M, Meystre P 2007 Phys. Rev. Lett. 99 073601

    [25]
    [26]
    [27]

    Schliesser A, Del'Haye P, Nooshi N, Vahala K L, Kippenberg T J 2006 Phys. Rev. Lett. 97 243905

    [28]
    [29]

    Wilson-Rae I, Nooshi N, Zwerger W, Kippenberg T J 2007 Phys. Rev. Lett. 99 093901

    [30]

    Marquardt F, Chen J P, Clerk A, Girvin S M 2007 Phys. Rev. Lett. 99 093902

    [31]
    [32]
    [33]

    Ma R, Schliesser A, Del'Haye P, Dabirian A, Anetsberger G, Kippenberg T J 2007 Opt. Lett. 32 2200

    [34]
    [35]

    Thompson J D, Zwickl B M, Jayich A M, Marquardt F, Girvin S M, Harris J G E 2008 Nature 452 72

    [36]
    [37]

    Wilson-Rae I, Nooshi N, Dobrindt J, Kippenberg T J, Zwerger W 2008 New J. Phys. 10 095007

    [38]

    Metzger C H, Karrai K 2004 Nature 432 1002

    [39]
    [40]

    Corbitt T, Chen Y, Innerhofer E, Muller-Ebhardt H, Ottaway D, Rehbein H, Sigg D, Whitcomb S, Wipf C, Mavalvala N 2007 Phys. Rev. Lett. 98 150802

    [41]
    [42]
    [43]

    Schliesser A, Riviere R, Anetsberger G, Arcizet O, Kippenberg T J 2008 Nat. Phys. 4 415

    [44]
    [45]

    Park Y S, Wang H L 2009 Nat. Phys. 5 489

    [46]
    [47]

    Li Y, Wang Y D, Xue F, Bruder C 2008 Phys. Rev. B 78 134301

    [48]

    Tian L 2009 Phys. Rev. B 79 193407

    [49]
    [50]
    [51]

    Grlacher S, Hammerer K, Vanner M R, Aspelmeyer M 2009 Nature 460 724

    [52]

    Dobrindt J M, Wilson-Rae I, Kippenberg T J 2008 Phys. Rev. Lett. 101 263602

    [53]
    [54]

    Huang S M, Agarwal G S 2009 Phys. Rev. A 80 033807

    [55]
    [56]

    Paternostro M, Gigan S, Kim M S, Blaser F, Bohm H R, Aspelmeyer M 2006 New J. Phys. 8 107

    [57]
    [58]

    Gardiner C W, Zoller P 1991 Quantum Noise (Berlin: Springer-Verlag) p50

    [59]
    [60]
    [61]

    Giovannetti V, Vitali D 2001 Phys. Rev. A 63 023812

    [62]
    [63]

    Walls D F, Milburn G J 1994 Quantum Optics (Berlin: Springer) p296

    [64]
    [65]

    DeJesus E X, Kaufman C 1987 Phys. Rev. A 35 5288

    [66]

    Teufel J D, Regal C A, Lehnert K W 2008 New J. Phys. 10 095002

    [67]
    [68]
    [69]

    Genes C, Vitali D, Tombesi P, Gigan S, Aspelmeyer M 2008 Phys. Rev. A 77 033804

    [70]

    Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M, Schoelkopf R J 2004 Nature 431 162

    [71]
    [72]
    [73]

    Thompson R J, Rempe G, Kimble H J 1992 Phys. Rev. Lett. 68 1132

    [74]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633

    [75]
    [76]
    [77]

    Corbitt T, Wipf C, Bodiya T, Ottaway D, Sigg D, Smith N, Whitcomb S, Mavalvala N 2007 Phys. Rev. Lett. 99 160801

    [78]

    Verlot P, Tavernarakis A, Briant T, Cohadon P F, Heidmann A 2010 Phys. Rev. Lett. 104 133602

    [79]
  • [1] 赵秀琴, 张文慧. 双模光机械腔中冷原子的量子相变和超辐射相塌缩.  , 2024, 73(24): . doi: 10.7498/aps.73.20241103
    [2] 叶志斌, 江舒, 王海伦, 吴飞, 邓小雷, 王建晓. 直接液体冷却薄片激光器中抽运光均匀性对光束波前畸变的影响.  , 2022, 71(5): 054202. doi: 10.7498/aps.71.20211811
    [3] 赵鑫, 杨晓虎, 张国博, 马燕云, 刘彦鹏, 郁明阳. 高功率激光辐照平面靶后辐射冷却效应对等离子体成丝的影响.  , 2022, 71(23): 235202. doi: 10.7498/aps.71.20220870
    [4] 刘妮, 张小芳, 梁九卿. 双光腔光机械系统的动力学相变和选择性能量交换.  , 2021, 70(14): 140301. doi: 10.7498/aps.70.20210178
    [5] 叶志斌, 江舒, 王海伦, 吴飞, 邓小雷, 王建晓. 直接液体冷却薄片激光器中抽运光均匀性对光束波前畸变的影响研究.  , 2021, (): . doi: 10.7498/aps.70.20211811
    [6] 陈国华, 石科军, 储进科, 吴昊, 周池楼, 肖舒. 环形磁场金属等离子体源冷却流场的数值模拟与优化.  , 2021, 70(7): 075203. doi: 10.7498/aps.70.20201368
    [7] 刘妮, 王建芬, 梁九卿. 双光腔耦合下机械振子的基态冷却.  , 2020, 69(6): 064202. doi: 10.7498/aps.69.20191541
    [8] 徐琴芳, 尹默娟, 孔德欢, 王叶兵, 卢本全, 郭阳, 常宏. 光梳主动滤波放大实现锶原子光钟二级冷却光源.  , 2018, 67(8): 080601. doi: 10.7498/aps.67.20172733
    [9] 张永棠. 一种广义三模腔光机械系统的相干完美吸收与透射.  , 2017, 66(10): 107101. doi: 10.7498/aps.66.107101
    [10] 肖佳, 徐大海, 伊珍, 谷文举. 三机械薄膜腔光力系统相互作用的研究.  , 2016, 65(12): 124202. doi: 10.7498/aps.65.124202
    [11] 贾佑华, 高勇, 钟标, 印建平. Er3+掺杂玻璃腔内增强激光冷却理论分析.  , 2014, 63(7): 074203. doi: 10.7498/aps.63.074203
    [12] 陆海波, 刘伟强. 迎风凹腔与逆向喷流组合热防护系统冷却效果研究.  , 2012, 61(6): 064703. doi: 10.7498/aps.61.064703
    [13] 李三伟, 宋天明, 易荣清, 崔延莉, 蒋小华, 王哲斌, 杨家敏, 江少恩. 神光Ⅱ激光装置黑腔辐射温度定量研究.  , 2011, 60(5): 055207. doi: 10.7498/aps.60.055207
    [14] 高峰, 常宏, 王心亮, 田晓, 张首刚. 锶原子Doppler冷却中再抽运光对原子俘获影响的理论和实验研究.  , 2011, 60(5): 050601. doi: 10.7498/aps.60.050601
    [15] 张琴, 金康, 唐远河, 屈光辉. V形三能级原子的辐射压力和激光冷却.  , 2011, 60(5): 053204. doi: 10.7498/aps.60.053204
    [16] 李三伟, 易荣清, 蒋小华, 何小安, 崔延莉, 刘永刚, 丁永坤, 刘慎业, 蓝可, 李永升, 吴畅书, 古培俊, 裴文兵, 贺贤土. 神光Ⅲ原型1 ns激光驱动黑腔辐射温度实验研究.  , 2009, 58(5): 3255-3261. doi: 10.7498/aps.58.3255
    [17] 丁彩英, 谭 磊, 刘利伟, 徐 岩. 量子微腔中运动原子的辐射压力.  , 2008, 57(9): 5612-5619. doi: 10.7498/aps.57.5612
    [18] 冯健, 王继锁, 高云峰, 詹明生. 光场及原子-光场耦合的非线性对腔内原子辐射谱的影响.  , 2001, 50(7): 1279-1283. doi: 10.7498/aps.50.1279
    [19] 何林生, 江海河. 组合光场增强压缩真空场中原子冷却作用.  , 1995, 44(12): 1904-1913. doi: 10.7498/aps.44.1904
    [20] 戴子高, 陆埮. 奇异星的冷却.  , 1994, 43(2): 198-204. doi: 10.7498/aps.43.198
计量
  • 文章访问数:  7961
  • PDF下载量:  890
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-08
  • 修回日期:  2011-08-09
  • 刊出日期:  2011-06-05

/

返回文章
返回
Baidu
map