-
瞬态液相辅助化学溶液沉积法(TLAG-CSD)中氧分压跃升路径生长YBa2Cu3O7-δ的外延取向依赖前驱相中的钡铜比。为了探究这现象的深层机理,本文在中高温热处理过程中探究了不同氧分压、不同钡铜比组分对钡铜氧液相([Ba-Cu-O]L)以及反应中间相转变的影响。研究表明:液相的形成都具有点到面的特性;液相出现的温度差异、形态差异,主要由组分决定,氧分压只起辅助作用。Y:Ba:Cu=0:3:7(0-3-7)都先于Y:Ba:Cu=0:2:3(0-2-3)出现液相,温差在20℃(高氧分压)或40℃(低氧分压)。实验发现这两组分的中间相性状存在差异,高氧分压下中间相BaCuO2在0-3-7组分是单一特征峰,晶粒大而分散;0-2-3组分则是多特征峰,晶粒小而密集。导致0-3-7组分的液相区表面积小于0-2-3组分,进而两组分液相中Y3+过饱和度不同,造成YBCO的取向差异。最后总结得出无氟液相生成的基本模型,完全的[Ba-Cu-O]L膜可由0-2-3组分在750℃高氧分压下生成。
-
关键词:
- TLAG-CSD /
- YBa2Cu3O7-δ外延取向 /
- [Ba-Cu-O]L /
- 钡铜比
The epitaxial orientation of YBa2Cu3O7-δ grown via the oxygen partial pressure jump pathway in transient liquid-phase assisted chemical solution deposition (TLAG-CSD) depends on the barium copper ratio in the precursor phase. To explore the underlying mechanism of this phenomenon, this article investigated the effects of different oxygen partial pressures and barium-to-copper ratio components on the barium-copper-oxygen liquid phase ([Ba-Cu-O]L) and the intermediate phase transition during the medium-high temperature heat treatment process. Research has shown that the formation of the liquid phase exhibits a point-to-surface characteristic; the temperature and morphological differences in the liquid phase are mainly determined by the composition, with oxygen partial pressure only playing a supporting role. Y:Ba:Cu=0:3:7 (0-3-7) components all appear before Y:Ba:Cu=0:2:3 (0-2-3) components in the liquid phase, with a temperature difference of 20℃ (high oxygen partial pressure) or 40℃ (low oxygen partial pressure). The experiment found that there are differences in the intermediate phase properties between these two components. Under high oxygen partial pressure, the intermediate phase BaCuO2 exhibits a single characteristic peak in the 0-3-7 component, with large and dispersed grains; the 0-2-3 component has multiple characteristic peaks, with small and dense grains. The surface area of the liquid phase region in the 0-3-7 component is smaller than that in the 0-2-3 component, resulting in different supersaturation levels of Y3+ in the liquid phases of the two components and causing orientation differences in YBCO. Finally, the basic model for the formation of fluorine-free liquid phase was summarized, and the complete [Ba-Cu-O]L film can be generated from the 0-2-3 component at high oxygen partial pressure at 750℃.-
Keywords:
- TLAG-CSD /
- Epitaxial Orientation of YBa2Cu3O7-δ /
- [Ba-Cu-O]L /
- Barium copper ratio
-
[1] Zhou Y H, Park D, Iwasa Y 2023Natl. Sci. Rev. 10 nwad001
[2] Obradors X, Puig T 2014Supercond. Sci. Technol. 27 044003
[3] Barth C, Komorowski P, Vonlanthen P, Herzog R, Tediosi R, Alessandrini M, Bonura M, Senatore C 2019Supercond. Sci. Technol. 32 075005
[4] Chow C C T, Ainslie M D, Chau K T 2023Energy Rep. 9 1124
[5] Favre S, Ariosa D, Yelpo C, Mazini M, Faccio R 2021Mater. Chem. Phys. 266 124507
[6] Khan M Z, Rivasto E, Tikkanen J, Rijckaert H, Malmivirta M, Liedke M O, Butterling M, Wagner A, Huhtinen H, Van Driessche I, Paturi P 2019Sci. Rep. 9 15425
[7] Yang T W, Wang L M 2023IEEE Trans. Appl. Supercond. 33 1
[8] Chen X, Tao B, Zhao R, Yang K, Li Z, Xie T, Zhong Y, Zhang T, Xia Y 2023Mater. Lett. 330 133336
[9] Chen T, Xia Y, Zhao R, Wu D, Feng Z, Yang J, Xin J, Wang W, Jin K, Tao B 2022Ceram. Int. 48 17837
[10] Zhao P, Wang Y, Huang Z liang, Mao Y, Xu Y L 2015J. Cryst. Growth 415 152
[11] Jin L H, Bai Y, Li C S, Feng J Q, Lei L, Zhao G Y, Gao L, Zhang P X 2019Mater. Lett. 250 34
[12] Wesolowski D E, Patta Y R, Cima M J 2009Phys. C Supercond. 469 766
[13] Bhuiyan M S, Paranthaman M, Salama K 2006Supercond. Sci. Technol. 19 R1
[14] Chu J, Zhao Y, Khan M Z, Tang X, Wu W, Shi J, Wu Y, Huhtinen H, Suo H, Jin Z 2019Cryst. Growth Des. 19 6752
[15] Soler L, Jareño J, Banchewski J, Rasi S, Chamorro N, Guzman R, Yáñez R, Mocuta C, Ricart S, Farjas J, Roura-Grabulosa P, Obradors X, Puig T 2020Nat. Commun. 11 344
[16] Shi J, Zhao Y, Jiang G, Zhu J, Wu Y, Gao Y, Quan X, Yu X, Wu W, Jin Z 2021J. Eur. Ceram. Soc. 41 5223
[17] Chu J, Zhao Y, Ji Y, Wu W, Shi J, Hong Z, Ma L, Suo H, Jin Z 2019J. Am. Ceram. Soc. 102 5705
[18] Chu N, Liu Z, Yang Z, Tong S, Shen J, Chen J, Cai C 2022Jpn. J. Appl. Phys. 61 075509
[19] Shen J J, Liu Z Y, Chen J, Zhou X H, Li Y G, Cai C B 2022J. Supercond. Nov. Magn. 35 3147
[20] Saltarelli L, Gupta K, Rasi S, Kethamkuzhi A, Queraltó A, Garcia D, Gutierrez J, Farjas J, Roura-Grabulosa P, Ricart S, Obradors X, Puig T 2022ACS Appl. Mater. Interfaces 14 48582
[21] Rasi S, Queraltó A, Banchewski J, Saltarelli L, Garcia D, Pacheco A, Gupta K, Kethamkuzhi A, Soler L, Jareño J, Ricart S, Farjas J, Roura‐Grabulosa P, Mocuta C, Obradors X, Puig T 2022Adv. Sci. 9 2203834
[22] Vermeir P, Cardinael I, Schaubroeck J, Verbeken K, Bäcker M, Lommens P, Knaepen W, D’haen J, De Buysser K, Van Driessche I 2010Inorg. Chem. 49 4471
[23] Rasi S, Soler L, Jareño J, Banchewski J, Guzman R, Mocuta C, Kreuzer M, Ricart S, Roura-Grabulosa P, Farjas J, Obradors X, Puig T 2020J. Phys. Chem. C 124 15574
[24] Zhou X, Chen J, Huang R, Liu Z, Cai C 2024Colloids Surf. Physicochem. Eng. Asp. 691 133830
[25] Lee J H, Lee H, Lee J W, Choi S M, Yoo S I, Moon S H 2014Supercond. Sci. Technol. 27 044018
[26] Song X, Daniels G, Feldmann D M, Gurevich A, Larbalestier D 2005Nat. Mater. 4 470
[27] Heinig N F, Redwing R D, Tsu I F, Gurevich A, Nordman J E, Babcock S E, Larbalestier D C 1996Appl. Phys. Lett. 69 577
[28] Soler L B 2019 Doctoral Dissertation学位论文(Institut de Ciències de Materials de Barcelona - CSIC)
[29] Shiohara Y, Goodilin E A 2000 Handb. Phys. Chem. Rare Earths , 2000 pp67–227
[30] Zhou X, Chen J, Huang R, Tao J, Fu Y, Li M, Liu Z, Cai C 2024Colloids Surf. Physicochem. Eng. Asp. 702 135106
[31] Chu P Y, Buchanan R C 1993J. Mater. Res. 8 2134
[32] Nevřiva M, Pollert E, Matějková L, Tříska A 1988J. Cryst. Growth 91 434
[33] Zhang W, Osamura K, Ochiai S 1990J. Am. Ceram. Soc. 73
计量
- 文章访问数: 64
- PDF下载量: 1
- 被引次数: 0