搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用有机磁效应研究电荷平衡影响激基复合物器件发光效率的物理机制

赵茜 郑冬 王晶晶 陈敬 杨俊 周银琼 张可怡 熊祖洪

引用本文:
Citation:

利用有机磁效应研究电荷平衡影响激基复合物器件发光效率的物理机制

赵茜, 郑冬, 王晶晶, 陈敬, 杨俊, 周银琼, 张可怡, 熊祖洪

Investigations for physical mechanisms of charge balances affecting the emission efficiency of exciplex-based OLEDs via using organic magnetic field effects

ZHAO Xi, ZHENG Dong, WANG Jingjing, CHEN Jing, YANG Jun, ZHOU Yinqiong, ZHANG Keyi, XIONG Zuhong
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 电荷平衡会影响激基复合物有机发光二极管的发光效率,然而背后的物理机制缺乏充分的理解.本文利用有机磁效应包括磁电导(magneto-conductance,MC)、磁电致发光(magneto-electroluminescence,MEL)和磁效率(magneto-efficiency,Mh)作为指纹式探测工具来研究电荷平衡影响激基复合物器件发光效率的物理机制.实验发现,非平衡器件的MC曲线中快速上升的低场效应(low-field effects,MCL,|B|£10 mT)和缓慢下降的高场效应(high-field effects,MCH,10<|B|£300 mT)分别归因于被磁场调控的系间窜越(intersystem crossing,ISC)过程和三重态激基复合物与多余电荷之间的三重态-电荷湮灭(triplet-charge annihilation,TCA)过程.与非平衡器件不同,平衡器件中快速下降的MCL和快速饱和的MCH分别归因于被磁场调控的反向系间窜越(reverse intersystem crossing,RISC)过程和平衡的载流子注入.随着注入电流从200 mA减小到25 mA,非平衡器件中MEL曲线的低场效应(MELL)始终反映被磁场调控的ISC过程,然而平衡器件的MELL呈现从ISC向RISC过程的转换(ISC®RISC).另外,虽然非平衡和平衡器件中Mh曲线的低场效应(MhL)都归因于被磁场调控的ISC过程,但是平衡器件中MhL的幅值比非平衡器件的低~4倍.这两种器件中不同的MC、MEL和Mh曲线揭示平衡的载流子注入会通过减弱TCA过程来增加三重态激基复合物的数量,从而增强RISC过程.因为RISC可以将不能退激辐射的三重态激基复合物转换为能退激辐射的单重态激基复合物,所以平衡器件的发光效率比非平衡器件的更高.显然,本文利用有机磁效应对电荷平衡影响激基复合物器件发光效率这个现象提出了一种新的物理机制.
    Charge balances will influence the emission efficiency of exciplex-based organic light-emitting diodes (OLEDs), but physical mechanisms behind this phenomenon lack full understandings. Here, organic magnetic field effects (OMFEs) including magneto-conductance (MC), magneto-electroluminescence (MEL), and magneto-efficiency (Mh) are used as fingerprint probing tools to study physical mechanisms of charge balances affecting the emission efficiency of exciplex-based OLEDs. Specifically, low- and high-field effects of MC traces [MCL (|B| £ 10 mT) and MCH (10 <|B|£ 300 mT)] from the unbalanced device are separately attributed to the magnetic field (B)-mediated intersystem crossing (ISC) process and the B-mediated triplet-charge annihilation (TCA) process between triplet exciplex states and excessive charge carriers, whereas those from the balanced device are respectively attributed to the B-mediated reverse intersystem crossing (RISC) process and the balanced carrier injection. As the injection current decreases from 200 to 25 mA, low-field effects of MEL traces (MELL) form the unbalanced device always reflect the B-mediated ISC process, but those from the balanced device exhibit a conversion from ISC to RISC processes. Furthermore, although low-field effects of Mh traces (MhL) from both unbalanced and balanced devices are attributed to the B-mediated ISC process, MhL values are ~4 times lower in the balanced device than the unbalanced one. These different MC, MEL, and Mh traces reveal that the balanced carrier injection can increase the number of triplet exciplex states via weakening the TCA process, which leads to the enhanced RISC process. Because RISC can upconvert dark triplet exciplex states to bright singlet exciplex states, the emission efficiency of the balanced device is higher than that of the unbalanced one. Obviously, this paper uses OMFEs to provide a new physical mechanism of charge balances affecting the emission efficiency of exciplex-based OLEDs.
  • [1]

    Gu J N, Tang Z Y, Guo H Q, Chen Y, Xiao J, Chen Z J, Xiao L X 2022J. Mater. Chem. C 10 4521

    [2]

    Amin N R A, Kesavan K K, Biring S, Lee C C, Yeh T H, Ko T Y, Liu S W, Wong K T, 2020ACS Appl. Electron. Mater. 2 1011

    [3]

    Li W S, Zhang X W, Zhang Y, Xu K, Xu J W, Wang H, Li H O, Guo J, Mo J H, Yang P Z 2018Synth. Met. 245 111

    [4]

    Ying S A, Yuan J K, Zhang S, Sun Q, Dai Y F, Qiao X F, Yang D Z, Chen J S, Ma D G 2019J. Mater. Chem. C 7 7114

    [5]

    Hung W Y, Chiang P Y, Lin S W, Tang W C, Chen Y T, Liu S H, Chou P T, Hung Y T, Wong K T 2016ACS Appl. Mater. Interfaces 8 4811

    [6]

    Sheng R, Li A S, Zhang F J, Song J, Duan Y, Chen P 2020Adv. Optical Mater. 8 1901247

    [7]

    Ning Y R, Zhao X, Tang X T, Chen J, Wu F J, Jia W Y, Chen X L, Xiong Z H 2022Acta Phys. Sin. 71 087201(in Chinese) [宁亚茹, 赵茜, 汤仙童, 陈敬, 吴凤娇, 贾伟尧, 陈晓莉, 熊祖洪2022 71 087201]

    [8]

    Liu C H, Du H T, Yu Y, Chen Z, Ren J F, Fan J H, Liu Q, Han S H, Pang Z Y 2024Org. Electron. 128 107025

    [9]

    Jin P F, Zhou Z Y, Wang H, Hao J J, Chen R, Wang J Y, Zhang C 2022J. Phys. Chem. Lett. 13 2516

    [10]

    Wei F X, Chen J, Zhao X, Wu Y T, Wang H Y, Chen X L, Xiong Z H 2023Adv. Sci. 10 2303192

    [11]

    Niu L B, Zhang Y, Chen L J, Zhang Q M, Guan Y X 2020Org. Electron. 87 105971

    [12]

    Zhao X, Chen J, Peng T, Liu J H, Wang B, Chen X L, Xiong Z H 2023Acta Phys. Sin. 72 167201(in Chinese) [赵茜, 陈敬, 彭腾, 刘俊宏, 汪波, 陈晓莉, 熊祖洪2023 72 167201]

    [13]

    Wu F J, Zhao X, Zhu H Q, Tang X T, Ning Y R, Chen J, Chen X L, Xiong Z H 2022ACS Photonics 9 2713

    [14]

    Shao M, Yan L, Li M X, Ilia I, Hu B 2013J. Mater. Chem. C 1, 1330

    [15]

    Zhao X, Tang X T, Zhu H Q, Ma C H, Wang Y, Ye S N, Tu L Y, Xiong Z H 2021ACS Appl. Electron. Mater. 3 3034

    [16]

    Hsiao C H, Liu S W, Chen C T, Lee J H 2010Org. Electron. 11 1500

    [17]

    Hung W Y, Fang G C, Lin S W, Cheng S H, Wong K T, Kuo T Y, Chou P T 2014Sci. Rep. 4 5161

    [18]

    Shen D, Chen W C, Lo M F, Lee C S 2021Mater. Today Energy 20 100644

    [19]

    Zhang Q, Liu X J, Jiao F, Braun S, Jafari M J, Crispin X, Ederth T, Fahlman M 2017J. Mater. Chem. C 5 275

    [20]

    Hua J, Li J X, Zhan Z L, Chai Y, Cheng Z Y, Li P D, Dong H, Wang J 2022RSC Adv. 12 21932

    [21]

    Miao Y Q, Wang G L, Yin M N, Guo Y Y, Zhao B, Wang H 2023Chem. Eng. J. 461 141921

    [22]

    Sheng Y, Nguyen T D, Veeraraghavan G, Mermer Ö, Wohlgenannt M, Qiu S, Scherf U 2006Phys. Rev. B 74, 045213

    [23]

    Wang Y F, Tiras K S, Harmon N J, Wohlgenannt M, Flatté M E 2016Phys. Rev. X 6 011011

    [24]

    Zhang T T, Holford D F, Gu H, Kreouzis T, Zhang S J, Gillin W P 2016Appl. Phys. Lett. 108 023303

    [25]

    Hu Y Q, Tang X T, Pan R H, Deng J Q, Zhu H Q, Xiong Z H 2019Phys. Chem. Chem. Phys. 21 17673

    [26]

    Tang X T, Pan R H, Xiong Z H 2023Chin. Sci. Bull. 68 2401(in Chinese) [汤仙童, 潘睿亨, 熊祖洪2023科学通报68 2401]

    [27]

    Crooker S A, Liu F L, Kelley M R, Martinez N J D, Nie W Y, Mohite A D, Nayyar I H, Tretiak S, Smith D L, Ruden P P 2014Appl. Phys. Lett. 105 153304

    [28]

    Liu F L, Kelley M R, Crooker S A, Nie W Y, Mohite A D, Ruden P P, Smith D L 2014Phys. Rev. B 90 235314

    [29]

    Chen P, Peng Q M, Yao L, Gao N, Li F 2013Appl. Phys. Lett. 102 063301

    [30]

    Peng Q M, Li A W, Fan Y X, Chen P, Li F 2014J. Mater. Chem. C 2 6264

    [31]

    Janssen P, Cox M, Wouters S H W, Kemerink M, Wienk M M, Koopmans B 2013Nat. Commun. 4 2286

    [32]

    Yuan P S, Qiao X F, Yan D H, Ma D G 2018J. Mater. Chem. C 6 5721

    [33]

    Zhang T Y, Chu B, Li W L, Su Z S, Peng Q M, Zhao B, Luo Y S, Jin F M, Yan X W, Gao Y, Wu H R, Zhang F, Fan D, Wang J B 2014ACS Appl. Mater. Interfaces 6 11907

    [34]

    Wu Y T, Zhu H Q, Wei F X, Wang H Y, Chen J, Ning Y R, Wu F J, Chen X L, Xiong Z H 2022Acta Phys. Sin. 71 227201(in Chinese) [吴雨廷, 朱洪强, 魏福贤, 王辉耀, 陈敬, 宁亚茹, 吴凤娇, 陈晓莉, 熊祖洪2022 71 227201]

    [35]

    Kim K H, Yoo S J, Kim J J 2016Chem. Mater. 28 1936

    [36]

    Zhu H Q, Jia W Y, Chen L X, Tang X T, Hu Y Q, Pan R H, Deng J Q, Xiong Z H 2019J. Mater. Chem. C 7 553

  • [1] 彭腾, 王辉耀, 赵茜, 刘俊宏, 汪波, 王晶晶, 周银琼, 张可怡, 杨俊, 熊祖洪. 电子注入层迁移率对Rubrene/C60基发光二极管半带隙开启电压的调控.  , doi: 10.7498/aps.73.20240864
    [2] 任兴, 于宏宇, 张勇. 基于BCPO发光材料近紫外有机发光二极管的电致发光效率与稳定性.  , doi: 10.7498/aps.73.20231301
    [3] 魏福贤, 刘俊宏, 彭腾, 汪波, 朱洪强, 陈晓莉, 熊祖洪. 利用热激子反向系间窜越的特征磁响应探测界面型OLED中的Dexter能量传递过程.  , doi: 10.7498/aps.72.20230998
    [4] 赵茜, 陈敬, 彭腾, 刘俊宏, 汪波, 陈晓莉, 熊祖洪. 激基复合物有机发光二极管中系间窜越和反向系间窜越过程的非单调电流依赖关系.  , doi: 10.7498/aps.72.20230765
    [5] 王辉耀, 魏福贤, 吴雨廷, 彭腾, 刘俊宏, 汪波, 熊祖洪. 激基复合物有机发光二极管中平衡载流子增强电荷转移态的反向系间窜越过程.  , doi: 10.7498/aps.72.20230949
    [6] 保希, 关云霞, 李万娇, 宋家一, 陈丽佳, 徐爽, 彭柯敖, 牛连斌. 载流子阶梯效应调控有机发光二极管三线态激子的解离和散射.  , doi: 10.7498/aps.72.20230851
    [7] 吴雨廷, 朱洪强, 魏福贤, 王辉耀, 陈敬, 宁亚茹, 吴凤娇, 陈晓莉, 熊祖洪. 激基复合物与电致激基复合物共存体系中Dexter能量传递导致的负磁效率.  , doi: 10.7498/aps.71.20221288
    [8] 刘萌娇, 张新稳, 王炯, 秦雅博, 陈月花, 黄维. 非周期微纳结构增强有机发光二极管光耦合输出的研究进展.  , doi: 10.7498/aps.67.20181209
    [9] 张雅男, 王俊锋. 利用发光层梯度掺杂改善顶发射白光有机发光二极管光谱的稳定性.  , doi: 10.7498/aps.64.097801
    [10] 黄迪, 徐征, 赵谡玲. 使用PTB7作为阳极修饰层提高有机发光二极管的性能.  , doi: 10.7498/aps.63.027301
    [11] 刘佰全, 兰林锋, 邹建华, 彭俊彪. 具有新型双空穴注入层的有机发光二极管.  , doi: 10.7498/aps.62.087302
    [12] 焦威, 雷衍连, 张巧明, 刘亚莉, 陈林, 游胤涛, 熊祖洪. 有机发光二极管的光致磁电导效应.  , doi: 10.7498/aps.61.187305
    [13] 张勇, 刘亚莉, 焦威, 陈林, 熊祖洪. 有机发光器件的磁电导效应.  , doi: 10.7498/aps.61.117106
    [14] 刘南柳, 艾娜, 胡典钢, 余树福, 彭俊彪, 曹镛, 王坚. 旋涂方式对有机发光显示屏发光均匀性及性能的影响.  , doi: 10.7498/aps.60.087805
    [15] 杨洋, 陈淑芬, 谢军, 陈春燕, 邵茗, 郭旭, 黄维. 有机发光二极管光取出技术研究进展.  , doi: 10.7498/aps.60.047809
    [16] 张勇, 刘荣, 雷衍连, 陈平, 张巧明, 熊祖洪. 基于Alq3的有机发光二极管的磁电导效应.  , doi: 10.7498/aps.59.5817
    [17] 张秀龙, 杨盛谊, 娄志东, 侯延冰. 有机电致发光器件的动态电学特性.  , doi: 10.7498/aps.56.1632
    [18] 王 军, 魏孝强, 饶海波, 成建波, 蒋亚东. 基于铱配合物材料的高效高稳定性有机发光二极管.  , doi: 10.7498/aps.56.1156
    [19] 许雪梅, 彭景翠, 李宏建, 瞿述, 赵楚军, 罗小华. 有机层界面对双层有机发光二极管复合效率的影响.  , doi: 10.7498/aps.53.286
    [20] 许雪梅, 彭景翠, 李宏建, 瞿述, 罗小华. 载流子迁移率对单层有机发光二极管复合效率的影响.  , doi: 10.7498/aps.51.2380
计量
  • 文章访问数:  55
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 上网日期:  2025-03-20

/

返回文章
返回
Baidu
map