搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

尘埃等离子体金属直棘轮中尘埃颗粒的整流

张顺欣 王硕 刘雪 王新占 刘富成 贺亚峰

引用本文:
Citation:

尘埃等离子体金属直棘轮中尘埃颗粒的整流

张顺欣, 王硕, 刘雪, 王新占, 刘富成, 贺亚峰

Rectification of Dust Particles in a Dusty Plasma Metal Straight Ratchet

ZHANG Shunxin, WANG Shuo, LIU Xue, WANG Xinzhan, LIU Fucheng, HE Yafeng
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 利用费曼棘轮原理可以实现将非平衡环境中粒子的随机运动整流成定向运动. 本文通过设计尘埃等离子体金属直棘轮实验装置, 构建沿棘轮通道分布的不对称等离子体环境, 实现了对微米级尘埃颗粒的可控性整流. 单分散尘埃颗粒在棘轮通道中能够形成定向输运, 其输运方向可通过调节放电功率与气压来精确调控. 通过对不同尺寸的尘埃颗粒输运研究发现, 这种整流效应具有普适性. 为了揭示尘埃颗粒的整流机制, 利用等离子体流体模型计算得到了棘轮通道中等离子体参量的二维分布, 进一步通过Langevin模拟研究发现, 尘埃颗粒在棘轮通道中不同的悬浮高度上受到的棘轮势的不对称取向不同, 使得其输运方向不同. 本文研究结果为进一步实现尘埃等离子体金属直棘轮中双分散颗粒分离奠定了理论与实验基础.
    Utilizing the principle of the Feynman ratchet, it is possible to rectify the random motion into directed flow of particles under a nonequilibrium environment. In this paper, an experimental setup for a dusty plasma metal straight ratchet is designed to create an asymmetric plasma environment along the ratchet channel, enabling a controllable rectification of micron-sized dust particles. Monodispersed dust particles can form a directional flow in the ratchet channel, and the transport direction could be precisely controlled by adjusting the discharge power and the gas pressure. Research on the transport of dust particles of varying sizes proves that the rectification effect is universal. To reveal the rectification mechanism of dust particles, a fluid model of plasma is employed to calculate the two-dimensional distribution of plasma parameters within the ratchet channel. Further research through Langevin simulation shows that dust particles experience ratchet potentials with distinct asymmetric orientations at different suspension heights within the ratchet channel, leading to different transport directions. The results of this paper provide a theoretical and experimental foundation for further achieving the separation of bi-disperse particles in dusty plasma metal straight ratchets.
  • 图 1  尘埃等离子体金属直棘轮实验示意图. 下极板的上表面由30个锯齿槽构成(图中只显示7个), 结合两个金属条, 形成沿x方向的棘轮通道. 单分散尘埃颗粒由棘轮通道中部的“0”号锯齿槽投入, 在特定条件沿棘轮通道会产生定向运动

    Fig. 1.  Schematic diagram of the dusty plasma metal straight ratchet. The upper surface of the lower electrode is composed of 30 sawteeth (shown only 7 sawteeth), Combined with two metal strips, a ratchet channel along the x direction is formed. Monodispersed dust particles are introduced into the “0” sawtooth at the middle of the ratchet channel, which exhibit directional flow along the ratchet channel under specific conditions.

    图 2  尘埃等离子体金属直棘轮中尘埃颗粒的正流. (a)、(c)和(e)表示随着投入尘埃颗粒数的增加, 尘埃颗粒在棘轮通道中的空间分布逐渐向右扩展, 形成正向整流. 图中N代表棘轮通道中尘埃颗粒总数量. (b)、(d)和(f)为对应的不同锯齿槽位置处颗粒数n的分布情况. 放电气压为$ {p=35 \ {\text{Pa}}} $, 放电功率为$ {P=40 \ {\text{W}}} $, 颗粒直径为15 µm. 图中尘埃颗粒做了亮度增强处理

    Fig. 2.  Positive flow of dust particles in the dusty plasma metal straight ratchet. (a), (c), and (e) show that as the number of introduced dust particles increases, the spatial distribution of dust particles in the ratchet channel gradually expands to the right, forming a positive flow. N represents the total number of dust particles in the ratchet channel. (b), (d), and (f) show the corresponding distributions of particle number n along the ratchet channel. Gas pressure $ {p=35 \ {\text{Pa}}} $, discharge power $ {P=40 \ {\text{W}}} $, particle diameter is 15 µm. Brightness of dust particles in images is enhanced.

    图 3  尘埃等离子体金属直棘轮中尘埃颗粒的无净位移运动. (a)、(c)和(e)表示随着投入尘埃颗粒数的增加, 尘埃颗粒在棘轮通道中的空间分布逐渐向两侧同时扩展. 图中N代表棘轮通道中尘埃颗粒总数量. (b)、(d)和(f)为对应的不同锯齿槽位置处颗粒数n的分布情况. 放电气压为$ {p=35 \ {\text{Pa}}} $, 放电功率为$ {P=25 \ {\text{W}}} $, 颗粒直径为15 µm. 图中尘埃颗粒做了亮度增强处理

    Fig. 3.  None net flow of dust particles in the dusty plasma metal straight ratchet. (a), (c), and (e) show that as the number of introduced dust particles increases, the spatial distribution of dust particles in the ratchet channel gradually expands to both sides simultaneously. N represents the total number of dust particles in the ratchet channel. (b), (d), and (f) show the corresponding distributions of the particle number n along the ratchet channel. Gas pressure $ {p=35 \ {\text{Pa}}} $, discharge power $ {P=25 \ {\text{W}}} $, particle diameter is 15 µm. Brightness of dust particles in images is enhanced.

    图 4  尘埃等离子体金属直棘轮中尘埃颗粒的逆向整流. (a)、(c)和(e)表示随着投入尘埃颗粒数的增加, 尘埃颗粒在棘轮通道中的空间分布逐渐向左扩展, 形成逆向整流. 图中N代表棘轮通道中尘埃颗粒总数量. (b)、(d)和(f)为对应的不同锯齿槽位置处颗粒数n的分布情况. 放电气压为$ {p=35 \ {\text{Pa}}} $, 放电功率为$ {P=15 \ {\text{W}}} $, 颗粒直径为15 µm. 图中尘埃颗粒做了亮度增强处理

    Fig. 4.  Negative flow of dust particles in the dusty plasma metal straight ratchet. (a), (c), and (e) show that as the number of introduced dust particles increases, the spatial distribution of dust particles in the ratchet channel gradually expands to the left, forming a negative flow. N represents the total number of dust particles in the ratchet channel. (b), (d), and (f) show the corresponding distributions of the particle number n along the ratchet channel. Gas pressure $ {p=35 \ {\text{Pa}}} $, discharge power $ {P=15 \ {\text{W}}} $, particle diameter is 15 µm. Brightness of dust particles in images is enhanced.

    图 5  不同放电气压和功率实验条件下尘埃颗粒整流的相图. 黑色曲线表示尘埃颗粒在棘轮通道中呈现正流和逆流的临界线. 颗粒直径为15 µm

    Fig. 5.  Phase diagram of the directional flow of dust particles under different gas pressure and power experimental conditions. The black curve represents the critical line separating the positive and negative flows of dust particles in the ratchet channel. Particle diameter is 15 µm.

    图 6  同一放电条件下不同尺寸尘埃颗粒在棘轮通道内的运动情况. (a)表示直径为10 µm的尘埃颗粒随着投入颗粒数目的增加逐渐形成正流; (b)表示直径为15 µm的尘埃颗粒在棘轮通道中没有形成定向输运; (c)表示直径为24 µm的尘埃颗粒随着撒入颗粒数目的增加逐渐形成逆流. 放电气压$ {p=35 \ {\text{Pa}}} $, 功率$ {P=25 \ {\text{W}}} $. 图中尘埃颗粒做了亮度增强处理

    Fig. 6.  The flow of dust particles with different sizes in the ratchet channel under same discharge conditions. (a)indicates that dust particles with a diameter of 10 µm gradually form a positive flow as the number of introduced dust particles increases; (b) indicates that dust particles with a diameter of 15µm do not form a directional flow in the ratchet channel; (c) indicates that dust particles with a diameter of 24µm gradually form a negative flow as the number of introduced particles increases. Gas pressure $ {p=35 \ {\text{Pa}}} $, discharge power $ {P=25 \ {\text{W}}} $. Brightness of dust particles in images is enhanced.

    图 7  两个锯齿槽上表面的鞘层电场$ E_z $的等值线分布(a)以及在这些等值线上对应的电势变化(b). (a)中鞘层电场的竖直分量$ E_z $的等值线呈现不对称性分布. 不同尺寸的尘埃颗粒沿不同的$ E_z $的等值线悬浮于鞘层中. (b)中的电势分布具有棘轮势特征. 因此, 不同尺寸的尘埃颗粒悬浮于鞘层不同的高度, 受到的棘轮势具有不同的特征, 进而使得其形成沿棘轮通道不一样的输运结果. 图中红、绿、蓝球分别表示直径为10、15和24 µm的尘埃颗粒. 放电气压$ {p=35 \ {\text{Pa}}} $, 功率$ {P=25 \ {\text{W}}} $

    Fig. 7.  The contour distribution of the sheath electric field $ E_z $ on the surface of two sawteeth (a) and the corresponding potential variation along these contour curves (b). (a): The contour curves of the vertical component of the sheath electric field $ E_z $ show asymmetric distributions. Dust particles of different sizes are suspended along different contour curves within the sheath. (b): The potential distribution has the characteristic of a ratchet potential. Therefore, dust particles of different sizes are suspended at different heights within the sheath, experiencing ratchet potentials with different characteristics, which leads to distinct transport outcomes along the ratchet channel. The red, green and blue balls in the curves indicate dust particles with diameter of 10, 15 and 24 µm, respectively. Gas pressure $ {p=35 \ {\text{Pa}}} $, discharge power $ {P=25 \ {\text{W}}} $.

    Baidu
  • [1]

    Merlino R L, Goree J A 2004 Phys. Today 57 32

    [2]

    Xiao Q M, Mao A H, He X L, Zou J T, Yang X Y, Sun M M, Li F, Tang P F, Zhou T C, Wang X G 2024 Plasma Sci. Technol. 26 085301Google Scholar

    [3]

    Langmuir I, Jones H A 1924 Science 59 380Google Scholar

    [4]

    Winter J 2004 Plasma Phys. Control. Fusion 46 B583Google Scholar

    [5]

    Morfill G E, Ivlev A V 2009 Rev. Mod. Phys. 81 1353Google Scholar

    [6]

    Shukla P K, Eliasson B 2009 Rev. Mod. Phys. 81 25Google Scholar

    [7]

    Yuan C X, Yao J F, Bogdanov D V, Bogdanov E A, Kudryavtsev A A, Zhou Z X 2019 Plasma Sources Sci. Technol. 28 095020Google Scholar

    [8]

    Wang J Q, Liu Y, Wang Y, Zhu W J, Zhang W W, Huang F 2021 IEEE Trans. Plasma Sci. 49 1694Google Scholar

    [9]

    Zhao Y Z, Liu S F, Kong W, Yang F 2024 Chin. Phys. B 33 065201Google Scholar

    [10]

    Chu J H, I L 1994 Phys. Rev. Lett. 72 4009Google Scholar

    [11]

    Joshi E, Pustylnik M Y, Thoma M H, Thomas H M, Schwabe M 2023 Phys. Rev. Res. 5 L012030Google Scholar

    [12]

    Du C R, Nosenko V, Thomas H M, Lin Y F, Morfill G E, Ivlev A V 2019 Phys. Rev. Lett. 123 185002Google Scholar

    [13]

    Huang D, Lu S Y, Murillo M S, Feng Y 2022 Phys. Rev. Res. 4 033064Google Scholar

    [14]

    Guan M, Chen Z D, Li M D, Liu Z M, Wang Y M, Yu M Y 2022 Chin. Phys. B 31 025201Google Scholar

    [15]

    Beckers J, Berndt J, Block D, Bonitz M, Bruggeman P J, Couëdel L, Delzanno G L, Feng Y, Gopalakrishnan R, Greiner F, Hartmann P, Horányi M, Kersten H, Knapek C A, Konopka U, Kortshagen U, Kostadinova E G, Kovačevié E, Krasheninnikov S I, Mann I, Mariotti D, Matthews L S, Melzer A, Mikikian M, Nosenko V, Pustylnik M Y, Ratynskaia S, Sankaran R M, Schneider V, Thimsen E J, Thomas E, Thomas H M, Tolias P, van de Kerkhof M 2023 Phys. Plasmas 30 120601Google Scholar

    [16]

    林麦麦, 王明月, 蒋蕾 2023 72 035201Google Scholar

    Lin M M, Wang M Y, Jiang L 2023 Acta Phys. Sin. 72 035201Google Scholar

    [17]

    Wei L, Liu B, Wang F P, Zhang H, Duan W S 2021 Chin. Phys. B 30 035201Google Scholar

    [18]

    Mamun A A, Shukla P K, Morfill G E 2004 Phys. Rev. Lett. 92 095005Google Scholar

    [19]

    黄渝峰, 贾文柱, 张莹莹, 宋远红 2024 73 085202Google Scholar

    Huang Y F, Jia W Z, Zhang Y Y, Song Y H 2024 Acta Phys. Sin. 73 085202Google Scholar

    [20]

    Melzer A, Schweigert V A, Piel A 1999 Phys. Rev. Lett. 83 3194Google Scholar

    [21]

    Ivlev A V, Konopka U, Morfill G, Joyce G 2003 Phys. Rev. E 68 026405Google Scholar

    [22]

    Hänggi P, Marchesoni F 2009 Rev. Mod. Phys. 81 387Google Scholar

    [23]

    Feynman R P, Leighton R B, Sands M 1963 The Feynman Lectures on Physics (Vol. I) (America: Addison-Wesley Publishing Company) p46

    [24]

    Dupont N, Gabardos L, Arrouas F, Ombredane N, Billy J, Peaudecerf B, Guéry-Odelin D 2023 Phys. Rev. Lett. 131 133401Google Scholar

    [25]

    Fedorova Z, Dauer C, Sidorenko A, Eggert S, Kroha J, Linden S 2021 Phys. Rev. Res. 3 013260Google Scholar

    [26]

    Roeling E M, Germs W C, Smalbrugge B, Geluk E J, de Vries T, Janssen R A J, Kemerink M 2011 Nat. Mater. 10 51Google Scholar

    [27]

    Arzola A V, Volke-Sepúlveda K, Mateos J L 2011 Phys. Rev. Lett. 106 168104Google Scholar

    [28]

    He Y F, Ai B Q, Dai C X, Song C, Wang R Q, Sun W T, Liu F C, Feng Y 2020 Phys. Rev. Lett. 124 075001Google Scholar

    [29]

    Zhang S X, Wang S, Yao T Y, Tian M, Fan W L, Liu F C, He Y F 2024 Plasma Sources Sci. Technol. 33 055008Google Scholar

    [30]

    Wang S, Zhang N, Zhang S X, Tian M, Cai Y W, Fan W L, Liu F C, He Y F 2022 Chin. Phys. B 31 065202Google Scholar

    [31]

    Melzer A 2019 Physics of Dusty Plasma: An Introduction (Switzerland: Springer Nature Switzerland AG) p8

    [32]

    Fortov V E, Ivlev A V, Khrapak S A, Khrapak A G, Morfill G E 2005 Phys. Rep. 421 1Google Scholar

  • [1] 李梦谣, 夏清, 蔡明辉, 杨涛, 许亮亮, 贾鑫禹, 韩建伟. 月球南极尘埃等离子体环境特性.  , doi: 10.7498/aps.73.20240599
    [2] 田淼, 姚廷昱, 才志民, 刘富成, 贺亚峰. 尘埃等离子体棘轮中颗粒分离的三维模拟.  , doi: 10.7498/aps.73.20240319
    [3] 陈伟, 黄海, 杨利霞, 薄勇, 黄志祥. 基于Fokker-Planck-Landau碰撞模型的非均匀尘埃等离子体目标散射特性.  , doi: 10.7498/aps.72.20222113
    [4] 林麦麦, 付颖捷, 宋秋影, 于腾萱, 文惠珊, 蒋蕾. 热尘埃等离子体中(2 + 1)维尘埃声孤波的传播特征.  , doi: 10.7498/aps.71.20210902
    [5] 邵春瑞, 李海洋, 王军, 夏国栋. 多孔结构体材料热整流效应.  , doi: 10.7498/aps.70.20211285
    [6] 杨建荣, 毛杰键, 吴奇成, 刘萍, 黄立. 强碰撞磁化尘埃等离子体中的漂移波.  , doi: 10.7498/aps.69.20200468
    [7] 孙俊超, 张宗国, 董焕河, 杨红卫. 尘埃等离子体中的分数阶模型及其Lump解.  , doi: 10.7498/aps.68.20191045
    [8] 夏益祺, 谌庄琳, 郭永坤. 柔性棘轮在活性粒子浴内的自发定向转动.  , doi: 10.7498/aps.68.20190425
    [9] 徐彬, 李辉, 王占阁, 许正文, 吴健. 高密度尘埃等离子体的非相干散射理论研究.  , doi: 10.7498/aps.66.049401
    [10] 辛建国, 杨传路, 王美山, 马晓光. (CH3)2和(NH2)2基团修饰的齐聚苯乙炔分子电子输运性质研究.  , doi: 10.7498/aps.65.073102
    [11] 宫卫华, 张永亮, 冯帆, 刘富成, 贺亚峰. 非均匀磁场尘埃等离子体中颗粒的复杂运动.  , doi: 10.7498/aps.64.195202
    [12] 林晓那, 张广平, 任俊峰, 原晓波, 胡贵超. 溶液酸碱性对低聚苯亚乙炔基分子结电输运性质的影响.  , doi: 10.7498/aps.63.068502
    [13] 李学良, 石雁祥. 双麦克斯韦分布尘埃等离子体中尘埃粒子的充电研究.  , doi: 10.7498/aps.63.215201
    [14] 吕艳, 王海燕, 包景东. 内部棘轮.  , doi: 10.7498/aps.59.4466
    [15] 仲生仁. 尘埃等离子体中非线性波的叠加效应及稳定性问题.  , doi: 10.7498/aps.59.2178
    [16] 万冀豫, 金克新, 谭兴毅, 陈长乐. Pr0.5Ca0.5MnO3/Si异质结输运特性和整流特性研究.  , doi: 10.7498/aps.59.8137
    [17] 石雁祥, 葛德彪, 吴 健. 尘埃粒子充放电过程对尘埃等离子体电导率的影响.  , doi: 10.7498/aps.55.5318
    [18] 吴 静, 张鹏云, 宋巧丽, 张家良, 王德真. 反应等离子体中尘埃空洞形成的实验研究.  , doi: 10.7498/aps.54.4794
    [19] 王正汹, 刘金远, 邹 秀, 刘 悦, 王晓钢. 尘埃等离子体鞘层的玻姆判据.  , doi: 10.7498/aps.53.793
    [20] 洪学仁, 段文山, 孙建安, 石玉仁, 吕克璞. 非均匀尘埃等离子体中孤子的传播.  , doi: 10.7498/aps.52.2671
计量
  • 文章访问数:  253
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 上网日期:  2025-02-17

/

返回文章
返回
Baidu
map