搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非均匀磁场尘埃等离子体中颗粒的复杂运动

宫卫华 张永亮 冯帆 刘富成 贺亚峰

引用本文:
Citation:

非均匀磁场尘埃等离子体中颗粒的复杂运动

宫卫华, 张永亮, 冯帆, 刘富成, 贺亚峰

Complex motions of grains in dusty plasma with nonuniform magnetic field

Gong Wei-Hua, Zhang Yong-Liang, Feng Fan, Liu Fu-Cheng, He Ya-Feng
PDF
导出引用
  • 本文研究了在非均匀磁场尘埃等离子体中不规则尘埃颗粒的复杂运动, 包括圆滚运动、尖头圆滚运动、圆周运动以及波浪运动等. 放置在电极上的圆柱形磁铁的主要作用是改变鞘层的径向分布, 进而对颗粒产生径向约束, 使尘埃颗粒悬浮于圆柱形磁铁周围, 其磁场并不足以磁化颗粒使其做圆滚运动. 通过与球形尘埃颗粒的对比实验发现, 圆滚运动是不规则尘埃颗粒在等离子体中特有的一种运动. 我们提出了一种新的机理: 由于不规则颗粒的自旋而引起的横向反Magnus力对颗粒的圆滚运动起了重要的作用. 文中通过受力分析定性地对实验中观察到的非球形颗粒的各种运动给出了合理的解释.
    We have studied various complex motions of the irregular dust grains immersed in non-uniformly magnetized plasma. The cylindrical magnet that we used for experiments significantly alters the radial distribution of the sheath potential which confines the negatively charged grains. Grains are horizontally illuminated by a 50 mW, 532 nm laser sheet and imaged by a CCD camera from the upper transparent electrode. Hypocycloid and epicycloid motions of grains are observed for the first time as far as we know. Cuspate cycloid motions, circle motion, wave motion, and stationary grains are also observed. Their trajectories can be obtained by using long-time exposure, and the characteristic parameters of the grain movement are measured by using the image processing with MATLAB. Though the dust grains can move around the magnet steadily in various trajectories, the induced magnetic field is too weak to give rise to cycloid motions of grains. Then we propose a new mechanism that an inverse Magnus force induced by the spin of the irregular grains plays an important role in their cycloid motions. The pollen pini we used for experiment is not a regular microsphere, there is a symmetry in the shape. On the basis of Bernoulli principle, the pressure difference between the left and right side of the forward moving grains produces the inverse Magnus effect. Additional comparison experiments with regular microspheres are also performed to confirm that the cycloid motions are distinctive features of an irregular dust grain immersed in the plasma. The periodical change of the cyclotron radius as the grain travels would result in the (cuspate) cycloid motions, and the maximal value of angular velocity of spin is about 105 rad/s. Our experimental observations can be well explained based on the force analysis in 2D horizontal plane.
      通信作者: 贺亚峰, heyf@hbu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11205044, 11405042)、河北省自然科学基金(批准号: A2011201006, A2012201015)、河北省教育厅基金(批准号: Y2012009)、河北省青年拔尖人才、中西部高校综合实力提升工程和河北大学科学研究基金资助的课题.
      Corresponding author: He Ya-Feng, heyf@hbu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11205044, 11405042), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2011201006, A2012201015), the Research Foundation of Education Bureau of Hebei Province, China (Grant No. Y2012009), the Program for Young Principal Investigators of Hebei Province, Midwest Universities Comprehensive Strength Promotion Project, and the Science Foundation of Hebei University.
    [1]

    Morfill G E, Ivlev A V 2009 Rev. Mod. Phys. 81 1353

    [2]

    Amatucci W E, Walker D N, Gatling G, Scime E E 2004 Phys. Plasmas 11 2097

    [3]

    Huang F, Ye M F, W L 2004 Chin. Sci. Bull. 49 2150 (in Chinese) [黄峰, 叶茂福, 王龙 2004 科学通报 49 2150]

    [4]

    Konopka U, Samsonov D, Ivlev A V, Goree J, Steinberg V 2000 Phys.Rev. E 61 1890

    [5]

    Hou L J, Wang Y N, Mikovic 2005 Phys. Plasmas 12 042104

    [6]

    Liu D Y, Wang D Z, Liu J Y 2000 Acta Phys. Sin. 49 1094(in Chinese) [刘德泳, 王德真, 刘金远 2000 49 1094]

    [7]

    Konopka U, Samsonov D, Ivlev A V, Goree J, Steinberg V, Morfill G E 2000 Phys. Rev. E 61 1890

    [8]

    Carstensen J, Greiner F, Hou L J, Maurer H, Piel A 2009 Phys. Plasma 16 013702

    [9]

    Hong X R, Duan W S, Sun J A, Shi Y R, Lv K P 2003 Acta Phys. Sin. 52 2671(in Chinese) [洪学仁, 段文山, 孙建安, 石玉任, 吕克璞 2003 52 2671]

    [10]

    Tsytovich V N, Sato N, Morfill G E 2003 New J. Phys. 5 43

    [11]

    Karasev V Yu, Dzlieva E S, Eikhvald A I, Ermolenko M A, Golubev M S, Ivanov A Yu 2009 Phys. Rev. E 79 026406

    [12]

    Karasev V Yu, Dzlieva E S, Eikhvald A I, Ermolenko M A, Golubev M S, Ivanov A Yu 2009 J. Plasma Fusion Res. Series 8 312

    [13]

    Krasheninnikov S I, Shevchenko V I, Shukla P K 2007 Phys. Lett. A 361 133

    [14]

    Juan W T, I L 1998 Phys. Rev. Lett. 80 3073

    [15]

    Zou X, liu J Y, Wang Z X, Gong Y, Liu Y, Wang X G 2004 Acta Phys. Sin. 53 3409(in Chinese) [邹秀, 刘金远, 王正汹, 宫野, 刘悦, 王晓钢 2004 53 3409]

    [16]

    Karasev V Yu, Dzlieva E S, Ivanov A Yu, Eikhvald A I 2006 Phys. Rev. E 74 066403

    [17]

    Holland D L, Fried B D, Morales G J 1993 Phys. Fluids B 5 1723

    [18]

    Kaw P K, Nishikawa K, Sato N 2002 Phys. Plasma 9 387

    [19]

    Paeva G V, Dahiya R P, Kroesen G M W, Stoffels W W 2004 IEEE Trans. Plasma Sci. 32 601

  • [1]

    Morfill G E, Ivlev A V 2009 Rev. Mod. Phys. 81 1353

    [2]

    Amatucci W E, Walker D N, Gatling G, Scime E E 2004 Phys. Plasmas 11 2097

    [3]

    Huang F, Ye M F, W L 2004 Chin. Sci. Bull. 49 2150 (in Chinese) [黄峰, 叶茂福, 王龙 2004 科学通报 49 2150]

    [4]

    Konopka U, Samsonov D, Ivlev A V, Goree J, Steinberg V 2000 Phys.Rev. E 61 1890

    [5]

    Hou L J, Wang Y N, Mikovic 2005 Phys. Plasmas 12 042104

    [6]

    Liu D Y, Wang D Z, Liu J Y 2000 Acta Phys. Sin. 49 1094(in Chinese) [刘德泳, 王德真, 刘金远 2000 49 1094]

    [7]

    Konopka U, Samsonov D, Ivlev A V, Goree J, Steinberg V, Morfill G E 2000 Phys. Rev. E 61 1890

    [8]

    Carstensen J, Greiner F, Hou L J, Maurer H, Piel A 2009 Phys. Plasma 16 013702

    [9]

    Hong X R, Duan W S, Sun J A, Shi Y R, Lv K P 2003 Acta Phys. Sin. 52 2671(in Chinese) [洪学仁, 段文山, 孙建安, 石玉任, 吕克璞 2003 52 2671]

    [10]

    Tsytovich V N, Sato N, Morfill G E 2003 New J. Phys. 5 43

    [11]

    Karasev V Yu, Dzlieva E S, Eikhvald A I, Ermolenko M A, Golubev M S, Ivanov A Yu 2009 Phys. Rev. E 79 026406

    [12]

    Karasev V Yu, Dzlieva E S, Eikhvald A I, Ermolenko M A, Golubev M S, Ivanov A Yu 2009 J. Plasma Fusion Res. Series 8 312

    [13]

    Krasheninnikov S I, Shevchenko V I, Shukla P K 2007 Phys. Lett. A 361 133

    [14]

    Juan W T, I L 1998 Phys. Rev. Lett. 80 3073

    [15]

    Zou X, liu J Y, Wang Z X, Gong Y, Liu Y, Wang X G 2004 Acta Phys. Sin. 53 3409(in Chinese) [邹秀, 刘金远, 王正汹, 宫野, 刘悦, 王晓钢 2004 53 3409]

    [16]

    Karasev V Yu, Dzlieva E S, Ivanov A Yu, Eikhvald A I 2006 Phys. Rev. E 74 066403

    [17]

    Holland D L, Fried B D, Morales G J 1993 Phys. Fluids B 5 1723

    [18]

    Kaw P K, Nishikawa K, Sato N 2002 Phys. Plasma 9 387

    [19]

    Paeva G V, Dahiya R P, Kroesen G M W, Stoffels W W 2004 IEEE Trans. Plasma Sci. 32 601

  • [1] 李梦谣, 夏清, 蔡明辉, 杨涛, 许亮亮, 贾鑫禹, 韩建伟. 月球南极尘埃等离子体环境特性.  , 2024, 73(15): 155201. doi: 10.7498/aps.73.20240599
    [2] 田淼, 姚廷昱, 才志民, 刘富成, 贺亚峰. 尘埃等离子体棘轮中颗粒分离的三维模拟.  , 2024, 73(11): 115201. doi: 10.7498/aps.73.20240319
    [3] 林麦麦, 王明月, 蒋蕾. 多组分尘埃等离子体中非线性尘埃声孤波的传播特征.  , 2023, 72(3): 035201. doi: 10.7498/aps.72.20221843
    [4] 段蒙悦, 贾文柱, 张莹莹, 张逸凡, 宋远红. 容性耦合硅烷等离子体尘埃颗粒空间分布的二维流体模拟.  , 2023, 72(16): 165202. doi: 10.7498/aps.72.20230686
    [5] 陈伟, 黄海, 杨利霞, 薄勇, 黄志祥. 基于Fokker-Planck-Landau碰撞模型的非均匀尘埃等离子体目标散射特性.  , 2023, 72(6): 060201. doi: 10.7498/aps.72.20222113
    [6] 林麦麦, 付颖捷, 宋秋影, 于腾萱, 文惠珊, 蒋蕾. 热尘埃等离子体中(2 + 1)维尘埃声孤波的传播特征.  , 2022, 71(9): 095203. doi: 10.7498/aps.71.20210902
    [7] 杨建荣, 毛杰键, 吴奇成, 刘萍, 黄立. 强碰撞磁化尘埃等离子体中的漂移波.  , 2020, 69(17): 175201. doi: 10.7498/aps.69.20200468
    [8] 孙俊超, 张宗国, 董焕河, 杨红卫. 尘埃等离子体中的分数阶模型及其Lump解.  , 2019, 68(21): 210201. doi: 10.7498/aps.68.20191045
    [9] 徐彬, 李辉, 王占阁, 许正文, 吴健. 高密度尘埃等离子体的非相干散射理论研究.  , 2017, 66(4): 049401. doi: 10.7498/aps.66.049401
    [10] 李学良, 石雁祥. 双麦克斯韦分布尘埃等离子体中尘埃粒子的充电研究.  , 2014, 63(21): 215201. doi: 10.7498/aps.63.215201
    [11] 赵晓云, 张丙开, 张开银. 两种带电尘埃颗粒的等离子体鞘层玻姆判据.  , 2013, 62(17): 175201. doi: 10.7498/aps.62.175201
    [12] 吴静, 刘国, 姚列明, 段旭如. 等离子体鞘层附近尘埃颗粒特性的数值模拟.  , 2012, 61(7): 075205. doi: 10.7498/aps.61.075205
    [13] 仲生仁. 尘埃等离子体中非线性波的叠加效应及稳定性问题.  , 2010, 59(4): 2178-2181. doi: 10.7498/aps.59.2178
    [14] 石雁祥, 葛德彪, 吴 健. 尘埃粒子充放电过程对尘埃等离子体电导率的影响.  , 2006, 55(10): 5318-5324. doi: 10.7498/aps.55.5318
    [15] 奚衍斌, 张 宇, 王晓钢, 刘 悦, 余 虹, 姜东光. 调制磁场清除柱形等离子体发生器中的尘埃颗粒.  , 2005, 54(1): 164-172. doi: 10.7498/aps.54.164
    [16] 吴 静, 张鹏云, 宋巧丽, 张家良, 王德真. 反应等离子体中尘埃空洞形成的实验研究.  , 2005, 54(10): 4794-4798. doi: 10.7498/aps.54.4794
    [17] 王正汹, 刘金远, 邹 秀, 刘 悦, 王晓钢. 尘埃等离子体鞘层的玻姆判据.  , 2004, 53(3): 793-797. doi: 10.7498/aps.53.793
    [18] 侯璐景, 王友年. 尘埃颗粒在射频等离子体鞘层中的非线性共振现象的理论研究.  , 2003, 52(2): 434-441. doi: 10.7498/aps.52.434
    [19] 洪学仁, 段文山, 孙建安, 石玉仁, 吕克璞. 非均匀尘埃等离子体中孤子的传播.  , 2003, 52(11): 2671-2677. doi: 10.7498/aps.52.2671
    [20] 王 龙. 等离子体中的颗粒成长模型.  , 1999, 48(6): 1072-1077. doi: 10.7498/aps.48.1072
计量
  • 文章访问数:  6267
  • PDF下载量:  190
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-12
  • 修回日期:  2015-04-27
  • 刊出日期:  2015-10-05

/

返回文章
返回
Baidu
map