搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

反射式光取向液晶偏振体全息柱透镜的特性

马陈文 陈芳芳 郑继红

引用本文:
Citation:

反射式光取向液晶偏振体全息柱透镜的特性

马陈文, 陈芳芳, 郑继红

Characteristics of reflective liquid crystal polarization holographic cylindrical lenses

MA Chenwen, CHEN Fangfang, ZHENG Jihong
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 光取向液晶技术是利用偏振光照射来实现液晶分子的定向排列, 该技术可以研制成偏振体全息光栅(polarization volume grating, PVG), 具有偏振和体全息选择特性, 且作为光耦合元件在光学波导及扩瞳输出方面有广泛应用前景. 本文报道了一种采用光控取向技术与偏振离轴全息光路相结合的方法, 制备了光斑直径为2 cm的液晶偏振体全息柱透镜(polarization variable line-space, PVLS). 实验过程中可通过控制曝光角度来获得所需光栅周期变化范围, 实现红绿蓝RGB三色光入射不同光栅周期下的衍射角角度相同. 实验结果表明: 在1721.2—5346.5 nm的光栅周期变化范围内, 当RGB三色光分别入射至光栅周期为3147 nm, 2649.1 nm, 2275.6 nm位置上时, 所测得的衍射角度均为11.59°, 实际衍射角度与理论衍射角度的误差在±0.5°以内; 在532 nm右旋圆偏光下, 正入射的衍射效率达90.6%, 满足布拉格条件的斜入射衍射效率为84.4%; 同时实现光斑在一维方向上扩束, 初步实现了PVLS在彩色波导领域应用的可行性验证.
    Photo-oriented liquid crystal technology utilizes polarized light illumination to achieve the directional alignment of liquid crystal molecules. This technology can be developed into polarization volume gratings (PVGs), which possess polarization and volume holographic selectivity characteristics, and also have a broad application prospect as an optical coupling element in optical waveguides and for pupil expansion output. This paper reports on the fabrication of a liquid crystal polarization volume holographic cylindrical lens (PVLS) with a beam diameter of 2 cm by using photo-oriented technology combined with a polarization off-axis holographic optical path. During the experiment, the exposure angle can be controlled to achieve the desired grating period variation range, enabling the diffraction angles of red, green, and blue light incident on different grating periods to be the same. The experimental results show that within the grating period variation range from 1721.2 to 5346.5 nm, when the red, the green, and the blue light are incident on grating with periods of 3147 nm, 2649.1 nm, and 2275.6 nm respectively, the measured diffraction angles are all 11.59°, with an error between the actual and theoretical diffraction angles within ±0.5°; under 532-nm right-handed circularly polarized light, the diffraction efficiency for 18 normal incidence reaches 90.6%, and the diffraction efficiency for oblique incidence satisfying the Bragg condition is 84.4%; simultaneously, beam expansion in one-dimensional direction is achieved, preliminarily verifying the feasibility of PVLS application in the field of color waveguides.
  • 图 1  (a)两束正交偏振平面波的干涉示意图; (b)正交偏振柱面波与平面波之间的干涉示意图; (c) PVG中偏振态的周期性分布; (d) PVLS光栅中偏振态的周期性分布

    Fig. 1.  (a) Schematic diagram of the interference between two orthogonally circularly polarized plane waves; (b) schematic diagram of the interference between an orthogonally circularly polarized cylindrical wave and a plane wave; (c) periodic distribution of polarization states in LCPG; (d) periodic distribution of polarization states in PVLS.

    图 2  正交圆偏振全息示意图

    Fig. 2.  Schematic diagrams of orthogonal circularly polarization holography.

    图 3  反射型PVLS光栅的偏振敏感及衍射特性①右旋圆偏振光入射样品表面1; ②左旋圆偏振光入射; ③右旋圆偏振光入射样品表面2(手性剂为右旋)

    Fig. 3.  Schematic diagram of the polarization sensitivity and diffraction characteristics of the reflective PVLS grating (with a right-handed chiral agent): ① Right-handed circularly polarized light incident on sample surface 1; ② Left-handed circularly polarized light incident; ③ Right-handed circularly polarized light incident on sample surface 2.

    图 4  (a)入耦合光栅衍射; (b)出耦合光栅衍射.

    Fig. 4.  (a) In-coupling grating diffraction; (b) out-coupling grating diffraction.

    图 5  CLC的内部结构示意图.

    Fig. 5.  Schematic diagram of the internal structure of CLC.

    图 6  液晶盒示意图

    Fig. 6.  Schematic diagram of the liquid crystal cell.

    图 7  变间距光栅制造实验装置示意图

    Fig. 7.  Schematic illustration of the experimental setup for fabricating PVLS grating.

    图 8  (a)制备的反射式PVLS(反射绿光); (b)反射式 PVLS 光栅的衍射示意图; (c)入射光与衍射光的示意图; (d)一维方向x—光栅周期$\varLambda $关系图

    Fig. 8.  (a) Fabricated reflective PVLS (anti-green light); (b) schematic diagram of diffraction for the reflective PVLS grating; (c) schematic diagram of incident and diffracted light; (d) graph of the relationship between the one-dimensional direction x and grating period $\varLambda $.

    图 9  532 nm右旋圆偏光斜入射PVLS光栅示意图

    Fig. 9.  Schematic diagram of right-handed circularly polarized 532 nm light obliquely incident on a PVLS grating.

    图 10  (a), (b)制备的反射红光和反射蓝光PVLS光栅; (c)一维方向x—RGB衍射角θ关系图; (d)RGB衍射角θ—光栅周期$\varLambda $关系图

    Fig. 10.  (a), (b) Fabricated PVLS gratings for anti-red and anti-blue light; (c) graph of the relationship between the one-dimensional direction x and RGB diffraction angle θ as a function; (d) graph of the relationship between RGB diffraction angle θ and grating period $\varLambda $ as a function.

    图 11  单层彩色波导理论图

    Fig. 11.  Theoretical diagram of a single-layer color waveguide.

    图 12  (a)光路示意图; (b), (c)532 nm激光和直径0.7 cm的532 nm右旋圆偏光照射至PVLS的传播示意图

    Fig. 12.  (a) Schematic diagram of the optical path; (b), (c) schematic diagram of the propagation of 532 nm laser and 532 nm right-handed circularly polarized light with a diameter of 0.7 cm incident on PVLS.

    表 1  PVLS液晶层主要材料及配比

    Table 1.  Main materials and ratios of the PVLS liquid crystal layer.

    5 CBR5011
    反射红色97.79%2.21%
    反射绿色97.37%2.63%
    反射蓝色96.94%3.06%
    下载: 导出CSV

    表 2  反射红光(632 nm)PVLS测量结果

    Table 2.  Measurement results of PVLS for anti-red light (632 nm) reflectance.

    x/cm光栅周期/nm衍射角/(°)
    0.91739.421.31
    0.52044.718
    02655.913.77
    –0.53567.510.2
    –0.95304.56.84
    下载: 导出CSV

    表 3  反射蓝光(457 nm)PVLS测量结果

    Table 3.  Measurement results of PVLS for blue light (457 nm) reflectance.

    x/cm光栅周期/nm衍射角/(°)
    0.91723.515.38
    0.52081.912.68
    02651.19.93
    –0.53684.57.13
    –0.95395.94.86
    下载: 导出CSV
    Baidu
  • [1]

    Kvasnikov E D, Kozenkov V M, Barachevskii V A 1979 Zh. Nauchn. Prikl. Fotogr. Kinematogr. 24 222

    [2]

    Ichimura K, Suzuki Y, Seki T, Kawanishi Y, Tamaki T, Aoki K 1989 Jpn. J. Appl. Phys. Suppl. 28 289

    [3]

    Gibbons W M, Shannon P J, Sun S T, Swetlin B J 1991 Nature 351 49Google Scholar

    [4]

    张梦若, 陈开鑫 2015 64 144205Google Scholar

    Zhang M R, Chen K X 2015 Acta Phys. Sin. 64 144205Google Scholar

    [5]

    裴丽, 赵瑞峰 2013 62 184213Google Scholar

    Pei L, Zhao R F 2013 Acta Phys. Sin. 62 184213Google Scholar

    [6]

    段磊, 徐润亲, 宋云波, 谭姝丹, 梁成斌, 徐帆江, 刘朝晖 2023 72 104203Google Scholar

    Duan L, Xu R Q, Song Y B, Tan S D, Liang C B, Xu F J, Liu Z H 2023 Acta Phys. Sin. 72 104203Google Scholar

    [7]

    曾莹, 佘彦超, 张蔚曦, 杨红 2024 73 164202Google Scholar

    Zeng Y, She Y C, Zhang W X, Yang H 2024 Acta Phys. Sin. 73 164202Google Scholar

    [8]

    杨雨桦, 何龙, 邓林宵, 朱立全, 顾春, 许立新 2023 72 114201Google Scholar

    Yang Y H, He L, Deng L X, Zhu L Q, Gu C, Xu L X 2023 Acta Phys. Sin. 72 114201Google Scholar

    [9]

    张夕飞, 肖金标, 朱建彬, 蔡纯, 丁东, 张明德, 孙小菡 2003 东南大学学报 (自然科学版) 33 22

    Zhang X F, Xiao J B, Zhu J B, Cai C, Ding D, Zhang M D, Sun X H 2003 J. Southeast Univ. (Nat. Sci. Ed. ) 33 22

    [10]

    马宏, 易新建, 陈四海 2004 光学学报 24 756

    Ma H, Yi X J, Chen S H 2004 Acta Opt. Sin. 24 756

    [11]

    Zengerle R, Bruckner H, Olzhausen H, Kohl A 1992 Electron. Lett. 28 631Google Scholar

    [12]

    周进朝, 黄佐华, 曾宪佑, 张勇 2012 光学学报 32 1212001Google Scholar

    Zhou J Z, Huang Z H, Zeng X Y, Zhang Y 2012 Acta Opt. Sin. 32 1212001Google Scholar

    [13]

    崔乃迪, 梁静秋, 梁中翥, 王维彪 2012 光学学报 32 239

    Cui N D, Liang J Q, Liang Z Z, Wang W B 2012 Acta Opt. Sin. 32 239

    [14]

    Lu Z L, Prather D W 2004 Opt. Lett. 29 1748Google Scholar

    [15]

    Cameron A 2012 Conference on Head- and Helmet-Mounted Displays XVII/Conference on Display Technologies and Applications for Defense, Security, and Avionics VI Baltimore, Maryland, United States, April 25–26, 2012 p83830E

    [16]

    罗豪, 翁嘉承, 李海峰 2022 光学学报 42 1005002Google Scholar

    Luo H, Weng J C, Li H F 2022 Acta Opt. Sin. 42 1005002Google Scholar

    [17]

    陈艳 2021 硕士学位论文(南京: 东南大学)

    Chen Y 2021 M. S. Thesis (Nanjing: Southeast University

    [18]

    Weng Y S, Xu D M, Zhang Y N, Li X H, Wu S T 2016 Opt. Express 24 17746Google Scholar

    [19]

    Kobashi J, Yoshida H, Ozaki M 2016 Nat. Photonics 10 389Google Scholar

    [20]

    Lee Y H, Yin K, Wu S T 2017 Opt. Express 25 27008Google Scholar

    [21]

    Weng Y S, Zhang Y N, Cui J Y, Liu A W, Shen Z W, Li X H, Wang B P 2018 Opt. Lett. 43 5773Google Scholar

    [22]

    Yin K, Lee Y H, He Z Q, Wu S T 2019 J. Soc. Inf. Disp. 27 232Google Scholar

    [23]

    Kun Y, Hung-Yuan L, Shin-Tson W 2020 SID Symp. Dig. Tech. Pap. 51 371Google Scholar

    [24]

    Wang K N, Zheng J H, Lu F Y, Gao H, Palanisamy A, Zhuang S L 2016 Appl. Opt. 55 4952Google Scholar

    [25]

    Chen J W, Fu S F, Zhang D, Qi Z F, Yang S, Wang Z J 1986 Chin. J. Lasers 13 291

    [26]

    Chen F F, Shen T, Ma C W, Sang J X, Xing C C, Zheng J H, Zhuang S L 2024 Opt. Lett. 49 3528Google Scholar

    [27]

    Wang C T, Tam A, Meng C L, Tseng M C, Li G J, Kwok H S 2020 Opt. Lett. 45 5323Google Scholar

    [28]

    Chen C W, Feng T M, Wu C W, Lin T H, Khoo I C 2023 Appl. Phys. Rev. 10 011413Google Scholar

    [29]

    毕亚军, 杨国琛, 关荣华 2004 53 4287Google Scholar

    Bi Y J, Yang G C, Guan R H 2004 Acta Phys. Sin. 53 4287Google Scholar

  • [1] 王志鹏, 关宝璐, 张峰, 杨嘉炜. 内腔亚波长光栅液晶可调谐垂直腔面发射激光器.  , doi: 10.7498/aps.70.20210957
    [2] 李丹, 梁君武, 刘华伟, 张学红, 万强, 张清林, 潘安练. CdS/CdS0.48Se0.52轴向异质结纳米线的非对称光波导及双波长激射.  , doi: 10.7498/aps.66.064204
    [3] 梁琴, 陈征宇. 受限液晶系统的理论新进展.  , doi: 10.7498/aps.65.174201
    [4] 陈泽章. 太赫兹波段液晶分子极化率的理论研究.  , doi: 10.7498/aps.65.143101
    [5] 王家璐, 杜木清, 张伶莉, 刘永军, 孙伟民. 基于不同液晶填充光子晶体光纤传输特性的研究.  , doi: 10.7498/aps.64.120702
    [6] 王启东, 彭增辉, 刘永刚, 姚丽双, 任淦, 宣丽. 基于混合液晶分子动力学模拟比较液晶分子旋转黏度大小.  , doi: 10.7498/aps.64.126102
    [7] 张梦若, 陈开鑫. 一种简单精准的渐变折射率分布光波导分析方法.  , doi: 10.7498/aps.64.144205
    [8] 席思星, 王晓雷, 黄帅, 常胜江, 林列. 基于扭曲向列液晶空间光调制器的矢量光生成.  , doi: 10.7498/aps.64.114204
    [9] 田赫, 孙伟民, 掌蕴东. 耦合谐振器光波导旋转传感的相位灵敏度.  , doi: 10.7498/aps.62.194204
    [10] 裴丽, 赵瑞峰. 统一非对称光波导横向耦合模理论分析.  , doi: 10.7498/aps.62.184213
    [11] 周建伟, 梁静秋, 梁中翥, 田超, 秦余欣, 王维彪. 光控液晶光子晶体微腔全光开关.  , doi: 10.7498/aps.62.134208
    [12] 田 赫, 掌蕴东, 王 号, 邱 巍, 王 楠, 袁 萍. 微环耦合谐振光波导中的色散控制模型与数值仿真.  , doi: 10.7498/aps.57.6400
    [13] 郑致刚, 李文萃, 刘永刚, 宣 丽. 双重复合式液晶/聚合物电调谐光栅的制备.  , doi: 10.7498/aps.57.7344
    [14] 刘 丹, 马仁敏, 王菲菲, 张增星, 张振生, 张学进, 王 笑, 白永强, 朱 星, 戴 伦, 章 蓓. 纳米集成光路中的光源、光波导和光增强.  , doi: 10.7498/aps.57.371
    [15] 任广军, 姚建铨, 王 鹏, 张 强, 张会云, 张玉萍. 液晶磁致旋光的研究.  , doi: 10.7498/aps.56.994
    [16] 余和军, 夏金松, 余金中. 一种模拟倾斜折射率界面光波导的新方法.  , doi: 10.7498/aps.55.1023
    [17] 殷建玲, 黄旭光, 刘颂豪, 胡社军. 液晶调制的光子晶体可控偏光片和光开关.  , doi: 10.7498/aps.55.5268
    [18] 徐宏来, 张 鹏, 赵建林, 高瑀含, 叶知隽, 杨德兴. 会聚激光扫描铌酸锂晶体写入光波导时的最佳曝光间距.  , doi: 10.7498/aps.55.3100
    [19] 王义平, 陈建平, 李新碗, 周俊鹤, 沈 浩, 施长海, 张晓红, 洪建勋, 叶爱伦. 快速可调谐电光聚合物波导光栅.  , doi: 10.7498/aps.54.4782
    [20] 于涛, 彭增辉, 阮圣平, 宣丽. 单体光交联制备液晶垂直取向膜.  , doi: 10.7498/aps.53.316
计量
  • 文章访问数:  333
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-30
  • 修回日期:  2025-01-27
  • 上网日期:  2025-02-17

/

返回文章
返回
Baidu
map