搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于PVDF-EtP纳米纤维膜的压电性能及其在压力传感器中的应用

程奥迪 余辉洋 汪辰涛 范梓阳 张佳琪 吴可滢 黄见秋

引用本文:
Citation:

基于PVDF-EtP纳米纤维膜的压电性能及其在压力传感器中的应用

程奥迪, 余辉洋, 汪辰涛, 范梓阳, 张佳琪, 吴可滢, 黄见秋

Piezoelectric properties of PVDF-EtP nanofiber membrane and its application in pressure sensors

CHENG Aodi, YU Huiyang, WANG Chentao, FAN Ziyang, ZHANG Jiaqi, WU Keying, HUANG Jianqiu
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 近年来, 聚偏氟乙烯(PVDF)基纳米纤维膜由于其优异的压电性能, 成为了传感器、能量采集器等应用中的重要材料. 然而, PVDF膜的压电性能仍受限于其本身的结构和材料特性, 因此, 本文研究了填料掺杂驻极体纳米颗粒(EtP)对PVDF纳米纤维膜性能的影响. 实验采用静电纺丝技术, 将不同浓度的填料掺杂到PVDF纳米纤维膜中, 发现适量的填料掺杂可以显著提高膜的压电性能. 此外, 填料的加入提高了PVDF纳米纤维膜电输出性能的稳定性. 实验结果表明, 在PVDF溶液中添加不同质量分数的填料, 例如质量分数为1%, 1.5%和2%的驻极体颗粒, 并通过静电纺丝制备纳米复合纳米纤维膜, 可以显著提高其在20 N测试压力下的电输出性能. 此外, 增加膜面积和施加的压力可以进一步提高它们的电输出性能. 本文还提出了一种高效的信号处理方法, 通过FIR数字低通滤波去除高频噪声、平滑先验法消除基线漂移, 并改进AMPD算法精确检测压电信号中的主波峰位置与特性, 从而提高信号的稳定性与特征提取准确性. 结合本文实验, 填料掺杂和静电纺丝技术的结合为提高PVDF纳米纤维膜的性能提供了一种简单有效的方法, 为其在各个领域的应用提供了新的可能性和广阔的前景.
    In recent years, polyvinylidene fluoride (PVDF)-based nanofiber membranes, as key materials for applications in sensors, energy harvesters, and flexible electronics, have received significant attention due to their excellent piezoelectric properties. However, the research on the piezoelectric performance of PVDF membranes is still limited because of their intrinsic structure and material characteristics. Therefore, in this work, the effects of filler doping on the properties of PVDF nanofiber membranes are investigated to enhance their piezoelectric performance and stability. Using electrospinning technology, electret particles are incorporated into PVDF nanofiber membranes at different concentrations (e.g. 1%, 1.5%, and 2%). Characterization tests of the composite nanofiber membranes, such as scanning electron microscopy (SEM) and X-ray diffraction (XRD), reveal that the doping of electret particles can increase the average fiber diameter and enhance the β-phase content. In the piezoelectric performance tests, the piezoelectric sensors made of nanofiber membranes doped with electric particles show significant improvement in electrical output at a test pressure of 20 N. Furthermore, increasing the membrane area and using higher pressure can further enhance the electrical output. These results show that the piezoelectric properties of PVDF membranes can be effectively improved by appropriately doping electric particles. Stability tests carried out three months after sensor was fabricated shows that the electrical output stability of the piezoelectric sensors containing electric particles has been significantly improved. Additionally, an efficient signal processing method is proposed, with an FIR digital low-pass filter used to remove high-frequency noise. This method is not only a smoothing prior method to eliminate baseline drift, but also an improved AMPD algorithm to accurately detect the peak position and features of the piezoelectric signal. This method can significantly enhance the stability and accuracy of signal feature extraction. All in all, this study presents a simple and effective approach to improving the piezoelectric performance and electrical output stability of PVDF nanofiber membranes through the combination of filler doping and electrospinning technology. This method not only optimizes the performance of PVDF-based composites but also provides new insights into and technical support for their broad applications in energy collection, smart sensors, flexible electronic devices, and other fields.
  • 图 1  (a) 正压电效应; (b) 逆压电效应

    Fig. 1.  (a) Positive piezoelectric effect; (b) converse piezoelectric effect.

    图 2  压电传感器在不同状态下的工作原理 (a) 未施加压力; (b) 施加压力

    Fig. 2.  Working principle of piezoelectric sensors in different states: (a) No pressure applied; (b) with pressure applied.

    图 3  (a)—(f) 压电传感器的制备过程; (g) 制备的压电膜的照片; (h) 压电膜的显微镜照片

    Fig. 3.  (a)–(f) Fabrication process of the piezoelectric sensors; (g) picture of fabricated piezoelectric membrane; (h) microscope picture of the piezoelectric membrane.

    图 4  (a)—(d) 不同浓度纳米复合薄膜的SEM图像及纳米纤维直径分布图; (e) PVDF和掺杂EtP的纳米复合薄膜的XRD谱图

    Fig. 4.  (a)–(d) SEM images and nanofiber diameter distribution maps of nanocomposite films with different concentrations; (e) XRD spectra of PVDF and EtP doped nanocomposite films.

    图 5  (a) 压电传感器的测试系统和传感器样品; (b) 不同PVDF/EtP浓度传感器的输出电压测试; (c) 输出电压与传感器尺寸之间的关系; (d) 输出电压与施加力之间的关系; (e) 制备传感器在不同施加力下的平均输出电压幅度; (f)压电系数测试

    Fig. 5.  (a) Testing system of the piezoelectric sensors and a sensor sample; (b) the output voltage testing of the sensors with various PVDF/EtP concentration; (c) relationship between the output voltage and the sensor size; (d) relationship between the output voltage and the applied force; (e) the average output voltage magnitude of fabricated sensors under different force; (f) piezoelectric coefficient test.

    图 6  传感器在20000次振动循环下的长期稳定性, 插图显示了不同循环周期下的信号, 新制备传感器的重复性测试 (a) 1% PVDF/EtP; (b) 10% PVDF. 制备3个月后传感器的重复性测试 (c) 1% PVDF/EtP; (d) 10% PVDF

    Fig. 6.  The long-term stability of the sensor under 20000 vibration cycles is shown in the illustration, which displays the signals at different cycle periods, repeatability testing of newly fabricated sensors: (a) 1% PVDF/EtP; (b) 10% PVDF. Repeatability testing of sensors fabricated three months before: (a) 1% PVDF/EtP; (b) 10% PVDF.

    图 7  (a) 基于PVDF/EtP纳米纤维压电传感器的系统工作流程; (b) 硬件系统照片; (c) 基于PVDF/EtP纳米纤维的压电传感器用于检测, 其中(Ⅰ)为手指按压; (Ⅱ)为肘部弯曲

    Fig. 7.  (a) System workflow based on PVDF/EtP nanofiber piezoelectric sensor; (b) hardware system photos; (c) a piezoelectric sensor based on PVDF/EtP nanofibers is used for detecting, where (I) represents finger pressure; (II) represents bend the elbow.

    Baidu
  • [1]

    Rasoolzadeh M, Sherafat Z, Vahedi M, Bagherzadeh E 2022 J. Alloys Compd. 917 165505Google Scholar

    [2]

    Zhang D D, Zhang X L, Li X J, Wang H P, Sang X D, Zhu G D, Yeung Y H 2022 Eur. Polym. J 166 0014

    [3]

    Fu G M, Shi Q S, Liang Y R, He Y Q, Xue R, He S F, Chen Y J 2022 Polyme 254 125087Google Scholar

    [4]

    Liang H, Zhang L, Wu T, Song H, Tang C 2022 Nanomaterials 13 102Google Scholar

    [5]

    Mirjalali S, Mahdavi A, Abrishami S, Bagherzadeh R, Asadnia M, Huang S 2023 Macromol. Mater. Eng. 308 2200442Google Scholar

    [6]

    Zhang M, Hu K, Meng Q, Lan Z, Shi S, Sun Q, Zhou L, Shen X 2023 Mater. Opt. Electron 11 4766

    [7]

    Leung C M, Chen X, Wang T, Tang Y, Duan Z, Zhao X, Zhou H, Wang F 2022 Mater. 15 1769Google Scholar

    [8]

    Tiwari S, Dubey D K, Prakash O, Das S, Maiti P 2023 Energy 275 127492Google Scholar

    [9]

    Chen G, Chen G, Pan L, Chen D 2022 Diam. Relat. Mater 129 109358Google Scholar

    [10]

    Chen L, Xiao W Q, Yan L, Wu T, Qiu Y S, Lin H L, Bian J, Lu Y 2018 J. Funct. Mater. 49 6064

    [11]

    Revathi S, Kennedy L J, Basha S K, Padmanabhan R 2018 J. Nanosci. Nanotechnol. 18 4953Google Scholar

    [12]

    Xu J, Yu T, Han D, Guan X L, Lei X P 2019 J. Wuhan Univ. Technol. Mater. Sci. Ed. 34 1279Google Scholar

    [13]

    Gregorio Jr R 2006 J. Appl. Polym. Sci. 100 3272Google Scholar

    [14]

    Tashiro K 1995 Plast. Eng. 28 63

    [15]

    Mahanty B, Ghosh S K, Lee D. W 2023 Nano 24 100421

    [16]

    Furukawa T 1989 Phase Transit. 18 143Google Scholar

    [17]

    Ramasundaram S, Yoon S, Kim K J, Lee J S 2008 Macromol. Chem. Phys. 209 2516Google Scholar

    [18]

    Constantino C J L, Job A E, Simoes R D, Giacometti J A, Zucolotto V, Oliveira O N, Gozzi G, Chinaglia D L 2005 Appl Spectrosc. 59 275

    [19]

    He S, Xin B J, Chen Z M, Liu Y 2018 Cellulose 25 3691Google Scholar

    [20]

    Gao Q, Cao C, Ao J P, Bi J L, Yao L Y, Guo J J, Sun G Z, Liu W, Zhang Y, Liu F F 2021 Appl. Surf. Sci. 578 152063

    [21]

    Chen X, Han M, Chen H, Cheng X, Song Y, Su Z, Jiang Y and Zhang H 2017 Nanoscale 9 1263Google Scholar

    [22]

    Kim Y, Wu X, Lee C, Oh J H 2021 ACS Appl. Mater. Interfaces 13 36967Google Scholar

    [23]

    Nunes J S, Sencadas V, Wu A, Kholkin A L, Vilarinho P M, Lanceros-Méndez S 2006 MRS Online proc. Libr. 949 0949

    [24]

    Guo X G 2018 M. S. Thesis (Nanjing: Southeast University) (in Chinese)[]

    [25]

    Wang X Y, Zuo J L, Jiang T L, Xiao J X, Tong J, Huang S Q, Zhang W H 2024 Engergies. 17 3886Google Scholar

    [26]

    Kulkarni N D, Kumari P 2023 Mater. Res. Bull. 157 112039Google Scholar

    [27]

    Kwon H, Yoo Y W, Park Y, Nam U H, Byon E 2023 J. Asian Ceram. Soc. 11 282Google Scholar

    [28]

    Kim M S, Lee D S, Park E C, Jeong S J, Song J S 2007 J. Eur. Ceram. Soc. 27 13Google Scholar

    [29]

    Haily E, Bih L, Bouari A E, Lahmar A, Elmarssi M, Manoun B 2020 Mater. Chem. Phys. 241 122434Google Scholar

    [30]

    Song G L, Chen L, Xing L Y, Zhang K, Wu Z Y, Yang H G, Zhang N 2021 Physica B 621 413308Google Scholar

    [31]

    Wang Q P, Jiang S L, Zhang Y Y, Zhang G Z, Xiong L Y 2011 J. Mater. Sci-Mater. El. 22 849Google Scholar

  • [1] 王天赐, 夏乾善, 黄信佐, 王永正, 刘斌, 张晋通, 黎涛. 单壁碳纳米管/聚醚酰亚胺电磁屏蔽薄膜的制备与性能.  , doi: 10.7498/aps.73.20240822
    [2] 许子非, 岳敏楠, 李春. 优化递归变分模态分解及其在非线性信号处理中的应用.  , doi: 10.7498/aps.68.20191005
    [3] 唐智灵, 于立娟, 李思敏. 基于高速移动通信的虚拟天线阵列理论研究.  , doi: 10.7498/aps.65.070701
    [4] 孙志刚, 庞雨雨, 胡靖华, 何雄, 李月仇. 紫外光辐照对TiO2纳米线电输运性能的影响及磁阻效应研究.  , doi: 10.7498/aps.65.097301
    [5] 唐海通, 敖玉辉, 王聪, 赵瑞雪, 高忠民, 孟繁玲. 聚丙烯腈基碳纤维原丝在纺丝过程中纳米孔变化规律与机理研究.  , doi: 10.7498/aps.64.046101
    [6] 张欣梧, 张晓青. 聚丙烯压电驻极体膜的压电和声学性能研究.  , doi: 10.7498/aps.62.167702
    [7] 欧阳玉花, 袁萍, 贾向东, 王小云, 薛思敏. 用信号处理技术及传播理论还原雷声频谱.  , doi: 10.7498/aps.62.084303
    [8] 张明琪, 王育华, 董鹏玉, 张佳. 静电纺丝法制备Bi2Fe4O9及其磁学性能的研究.  , doi: 10.7498/aps.61.238102
    [9] 向军, 宋福展, 沈湘黔, 褚艳秋. 一维Ni0.5Zn0.5Fe2O4/SiO2复合纳米结构的制备及其磁性能.  , doi: 10.7498/aps.59.4794
    [10] 江建军, 袁 林, 邓联文, 何华辉. 磁性纳米颗粒膜的微磁学模拟.  , doi: 10.7498/aps.55.3043
    [11] 邱勋林, 夏钟福, 王飞鹏. 压力膨化后的热处理温度对PP蜂窝膜驻极体机电性质的影响.  , doi: 10.7498/aps.55.2578
    [12] 安振连, 汤敏敏, 夏钟福, 盛晓晨, 张晓青. 聚丙烯孔洞驻极体膜的化学表面处理及电荷稳定性.  , doi: 10.7498/aps.55.803
    [13] 王飞鹏, 夏钟福, 裘晓敏, 吕 航, 邱勋林, 沈 军. 压力膨化处理对正极性聚丙烯蜂窝膜的驻极体性质的影响.  , doi: 10.7498/aps.54.4400
    [14] 邱勋林, 夏钟福, 安振连, 吴贤勇. 热膨胀处理的聚丙烯蜂窝膜驻极体的压电性.  , doi: 10.7498/aps.54.402
    [15] 邵 杰, 高晓明, 袁怿谦, 杨 颙, 曹振松, 裴世鑫, 张为俊. 信号处理改善波长调制光谱灵敏度的实验研究.  , doi: 10.7498/aps.54.4638
    [16] 邓联文, 江建军, 冯则坤, 张秀成, 何华辉. FeCoBSiO2磁性纳米颗粒膜的微波电磁特性.  , doi: 10.7498/aps.53.4359
    [17] 李鸿光, 孟 光. 基于经验模式分解的混沌干扰下谐波信号的提取方法.  , doi: 10.7498/aps.53.2069
    [18] 汪芙平, 王赞基, 郭静波. 混沌背景下信号的盲分离.  , doi: 10.7498/aps.51.474
    [19] 汪芙平, 郭静波, 王赞基, 萧达川, 李茂堂. 强混沌干扰中的谐波信号提取.  , doi: 10.7498/aps.50.1019
    [20] 方志良, 周春燕, 许欣, 母国光. 白光图象处理中颗粒噪声的研究.  , doi: 10.7498/aps.39.741
计量
  • 文章访问数:  421
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-04
  • 修回日期:  2025-01-16
  • 上网日期:  2025-02-17

/

返回文章
返回
Baidu
map