搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

(CH3)2和(NH2)2基团修饰的齐聚苯乙炔分子电子输运性质研究

辛建国 杨传路 王美山 马晓光

引用本文:
Citation:

(CH3)2和(NH2)2基团修饰的齐聚苯乙炔分子电子输运性质研究

辛建国, 杨传路, 王美山, 马晓光

Electronic transport properties of oligo phenylene ethynylene molecule modified by the (CH3)2 and (NH2)2 groups

Xin Jian-Guo, Yang Chuan-Lu, Wang Mei-Shan, Ma Xiao-Guang
PDF
导出引用
  • 采用密度泛函理论和非平衡格林函数相结合的方法研究了S原子作为单、双端基的(CH3)2-OPE (齐聚苯乙炔)和(NH2)2-OPE分子在金电极间的电子输运性质. 通过第一性原理优化计算获得分子部分稳定结构, 再置于Au电极之间构成两极系统, 然后再优化整个两极系统获得稳定结构. 另外, 通过非平衡格林函数方法计算了两极系统的电子输运性质. 计算结果表明, 不同的修饰基团和桥接方式可以导致两极系统的开关效应、负微分电阻行为和整流行为等不同的电子输运性质. 通过计算不同偏压下的分子体系投影轨道电子分布、透射谱、态密度, 对这些新异的电输运性质出现的机理进行了解释.
    The modification effects of the groups (CH3)2 and (NH2)2 on the oligo phenylene ethynylene (OPE) molecules with single and double S atoms connected to the two electrodes are investigated by the density functional theory and non-equilibrium Green function. The modified OPE molecule is optimized and used to build a two-probe system with Au electrodes. Then the two-probe system is fully relaxed to obtain a stable structure. The electronic transport properties of the two-probe system are also calculated with the non-equilibrium Green function method. The calculation results show that both the modified groups and the bridge atoms can lead to the switch effect, the negative differential resistance behavior, and the rectifying behavior for the two-probe system. When molecules are connected with single S atom at one end, both the (NH2)2-OPE and the (CH3)2-OPE molecules show the rectifying behavior. However, the (NH2)2-OPE also shows a switch effect at larger voltage because there is current when the negative bias is over 1.3 V, while the (CH3)2-OPE molecule demonstrates a complete rectifying behavior because it is hardly conductive in the whole positive bias area. The current of OPE molecule without modification group always increases with the increase of voltage. Therefore, it is only a resistance. These results are different from that of NO2-OPE-NH2 molecule which shows a negative differential resistance behavior. For the case of the molecule connected with S atoms at both ends, the (NH2)2-OPE(S) and (CH3)2-OPE(S) models show negative differential resistance behaviors in the negative bias range. It is found that both (NH2)2-OPE and (CH3)2-OPE molecules demonstrate the negative differential resistance behaviors when they are connected with S atoms bridge at both ends. However, the current of the molecule with one S atom at one end is about two-order magnitude lower than that of the molecule with S atoms at both ends. It is shown that S atom acting as a bridge can significantly affect the characteristic of current-voltage. The mechanisms for the various characteristics of the electronic transport properties are explored by analyzing the projection orbit electron distribution, the transmission spectrum, and the density of states under the different bias voltages. For (NH2)2-OPE molecule with a single S atom at one end in the negative bias range, only the lowest unoccupied molecular orbital (LUMO) can transfer electron with low bias, but both highest occupied molecular orbital (HOMO) and LUMO can be conductive with high bias, which results in the switch effect. In the positive bias range, both HOMO and LUMO cannot be conductive with low bias, while LUMO can be conductive with high bias, which results in the switch behavior. For the case of (NH2)2-OPE molecule with one S atom at each end, only the HOMO can transfer electron in the low bias range, while the LUMO can be conductive at high positive bias, but both HOMO and LUMO cannot be conductive in high negative bias range, which leads to the non-symmetric negative differential resistance effect in the whole bias range. A similar analysis of the difference between HOMO and LUMO can be used to understand the characteristics of the current-voltage of (CH3)2-OPE. Considering the fact that the different modification groups can lead to various current-voltage properties of OPE molecule, the modified OPE molecule is a promising candidate for designing molecule device.
      通信作者: 杨传路, yangchuanlu@263.net
    • 基金项目: 国家自然科学基金(批准号: 11374132, 11574125)和山东省泰山学者计划(批准号: ts201511055)资助的课题.
      Corresponding author: Yang Chuan-Lu, yangchuanlu@263.net
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374132, 11574125) and the Taishan Scholars Project of Shandong Province, China (Grant No. ts201511055).
    [1]

    Chen J, Wang W, Reed M A, Rawlett A M, Price D W, Tour J M 2000 Appl. Phys. Lett. 77 1224

    [2]

    Chen J, Reed M A, Rawlett A M, Tour J M 1999 Science 286 1550

    [3]

    Collier C P, Wong E W, Belohradsky M, Raymo F M, Stoddart J F, Kuekes P J, Williams R S, Heath J R 1999 Science 285 391

    [4]

    Gonzalez C, Simo'n-Manso Y, Batteas J, Marquez M, Ratner M, Mujica V 2004 J. Phys. Chem. B 108 18414

    [5]

    Xia C J, Fang C F, Hu G C, Li D M, Liu D S, Xie S J, Zhao M W 2008 Acta Phys. Sin. 57 3148 (in Chinese) [夏蔡娟, 房常峰, 胡贵超, 李冬梅, 刘德胜, 解世杰, 赵明文 2008 57 3148]

    [6]

    An Y P, Yang C L, Wang M S, Ma X G, Wang D H 2010 Acta Phys. Sin. 59 2010 (in Chinese) [安义鹏, 杨传路, 王美山, 马晓光, 王德华 2010 59 2010]

    [7]

    Martín S, Grace I, Bryce M R, Wang C, Jitchati R, Batsanov A S, Higgins S J, Lambert C J, Nichols R J 2010 J. Am. Chem. Soc. 132 9157

    [8]

    Wu S, González M T, Huber R, Grunder S, Mayor M, Schönenberger C, Calame M 2008 Nat. Nanotechnol. 3 569

    [9]

    Wang L J, Zhou K G, Tan L, Wang H, Shi Z F, Wu G P, Xu Z G, Cao X P, He H X, Zhang H L 2011 Chem. Eur. J. 17 8414

    [10]

    Ma J, Yang C L, Wang L Z, Wang M S, Ma X G 2014 Physica B 434 32

    [11]

    Chen X C, Yang J, Zhou Y H, Xu Y 2009 Acta Phys. Sin. 58 3064 (in Chinese) [陈小春, 杨君, 周艳红, 许英 2009 58 3064]

    [12]

    Delley B 1990 J. Chem. Phys. 92 508

    [13]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671

    [14]

    Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [15]

    Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P, Sánchez-Portal D 2002 J. Phys. Condens. Mat. 14 2745

    [16]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407

    [17]

    Tachibana M, Yoshizawa K, Ogawa A, Fujimoto H, Hoffmann R 2002 J. Phys. Chem. B 106 12727

    [18]

    Yang L H, Yang C L, Wang M S, Ma X G 2015 Phys. Lett. A 379 1726

    [19]

    Bttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207

    [20]

    Stokbro K 2008 J. Phys. 20 064216

  • [1]

    Chen J, Wang W, Reed M A, Rawlett A M, Price D W, Tour J M 2000 Appl. Phys. Lett. 77 1224

    [2]

    Chen J, Reed M A, Rawlett A M, Tour J M 1999 Science 286 1550

    [3]

    Collier C P, Wong E W, Belohradsky M, Raymo F M, Stoddart J F, Kuekes P J, Williams R S, Heath J R 1999 Science 285 391

    [4]

    Gonzalez C, Simo'n-Manso Y, Batteas J, Marquez M, Ratner M, Mujica V 2004 J. Phys. Chem. B 108 18414

    [5]

    Xia C J, Fang C F, Hu G C, Li D M, Liu D S, Xie S J, Zhao M W 2008 Acta Phys. Sin. 57 3148 (in Chinese) [夏蔡娟, 房常峰, 胡贵超, 李冬梅, 刘德胜, 解世杰, 赵明文 2008 57 3148]

    [6]

    An Y P, Yang C L, Wang M S, Ma X G, Wang D H 2010 Acta Phys. Sin. 59 2010 (in Chinese) [安义鹏, 杨传路, 王美山, 马晓光, 王德华 2010 59 2010]

    [7]

    Martín S, Grace I, Bryce M R, Wang C, Jitchati R, Batsanov A S, Higgins S J, Lambert C J, Nichols R J 2010 J. Am. Chem. Soc. 132 9157

    [8]

    Wu S, González M T, Huber R, Grunder S, Mayor M, Schönenberger C, Calame M 2008 Nat. Nanotechnol. 3 569

    [9]

    Wang L J, Zhou K G, Tan L, Wang H, Shi Z F, Wu G P, Xu Z G, Cao X P, He H X, Zhang H L 2011 Chem. Eur. J. 17 8414

    [10]

    Ma J, Yang C L, Wang L Z, Wang M S, Ma X G 2014 Physica B 434 32

    [11]

    Chen X C, Yang J, Zhou Y H, Xu Y 2009 Acta Phys. Sin. 58 3064 (in Chinese) [陈小春, 杨君, 周艳红, 许英 2009 58 3064]

    [12]

    Delley B 1990 J. Chem. Phys. 92 508

    [13]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671

    [14]

    Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [15]

    Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P, Sánchez-Portal D 2002 J. Phys. Condens. Mat. 14 2745

    [16]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407

    [17]

    Tachibana M, Yoshizawa K, Ogawa A, Fujimoto H, Hoffmann R 2002 J. Phys. Chem. B 106 12727

    [18]

    Yang L H, Yang C L, Wang M S, Ma X G 2015 Phys. Lett. A 379 1726

    [19]

    Bttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207

    [20]

    Stokbro K 2008 J. Phys. 20 064216

  • [1] 邢海英, 张子涵, 吴文静, 郭志英, 茹金豆. 石墨烯电极弯折对2-苯基吡啶分子器件负微分电阻特性的调控和机理.  , 2023, 72(3): 038502. doi: 10.7498/aps.72.20221212
    [2] 李媛媛, 胡竹斌, 孙海涛, 孙真荣. 胆红素分子激发态性质的密度泛函理论研究.  , 2020, 69(16): 163101. doi: 10.7498/aps.69.20200518
    [3] 罗强, 杨恒, 郭平, 赵建飞. N型甲烷水合物结构和电子性质的密度泛函理论计算.  , 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [4] 张陈俊, 王养丽, 陈朝康. InCn+(n=110)团簇的密度泛函理论研究.  , 2018, 67(11): 113101. doi: 10.7498/aps.67.20172662
    [5] 杜建宾, 张倩, 李奇峰, 唐延林. 基于密度泛函理论的C24H38O4分子外场效应研究.  , 2018, 67(6): 063102. doi: 10.7498/aps.67.20172022
    [6] 王雅静, 李桂霞, 王治华, 宫立基, 王秀芳. Imogolite类纳米管直径单分散性密度泛函理论研究.  , 2016, 65(4): 048101. doi: 10.7498/aps.65.048101
    [7] 温俊青, 张建民, 姚攀, 周红, 王俊斐. PdnAl(n=18)二元团簇的密度泛函理论研究.  , 2014, 63(11): 113101. doi: 10.7498/aps.63.113101
    [8] 温俊青, 夏涛, 王俊斐. PtnAl (n=18)小团簇的密度泛函理论研究.  , 2014, 63(2): 023103. doi: 10.7498/aps.63.023103
    [9] 杨军, 章曦, 苗仁德. 自旋场效应晶体管中隧道磁阻的势垒相关反转效应.  , 2014, 63(21): 217202. doi: 10.7498/aps.63.217202
    [10] 解晓东, 郝玉英, 章日光, 王宝俊. Li掺杂8-羟基喹啉铝的密度泛函理论研究.  , 2012, 61(12): 127201. doi: 10.7498/aps.61.127201
    [11] 范志强, 谢芳. 硼氮原子取代掺杂对分子器件负微分电阻效应的影响.  , 2012, 61(7): 077303. doi: 10.7498/aps.61.077303
    [12] 郭超, 张振华, 潘金波, 张俊俊. D-B-A分子整流特性的端基效应.  , 2011, 60(11): 117303. doi: 10.7498/aps.60.117303
    [13] 潘金波, 张振华, 邱明, 郭超. 分子整流器整流特性的键桥调控效应.  , 2011, 60(3): 037302. doi: 10.7498/aps.60.037302
    [14] 金蓉, 谌晓洪. 密度泛函理论对ZrnPd团簇结构和性质的研究.  , 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [15] 万冀豫, 金克新, 谭兴毅, 陈长乐. Pr0.5Ca0.5MnO3/Si异质结输运特性和整流特性研究.  , 2010, 59(11): 8137-8141. doi: 10.7498/aps.59.8137
    [16] 杨培芳, 胡娟梅, 滕波涛, 吴锋民, 蒋仕宇. Rh在单壁碳纳米管上吸附的密度泛函理论研究.  , 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [17] 王海雷, 杨世平. 三势阱中玻色-爱因斯坦凝聚的开关特性.  , 2008, 57(8): 4700-4705. doi: 10.7498/aps.57.4700
    [18] 曾振华, 邓辉球, 李微雪, 胡望宇. O在Au(111)表面吸附的密度泛函理论研究.  , 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
    [19] 叶贞成, 蔡 钧, 张书令, 刘洪来, 胡 英. 方阱链流体在固液界面分布的密度泛函理论研究.  , 2005, 54(9): 4044-4052. doi: 10.7498/aps.54.4044
    [20] 张志勇, 王太宏. 单电子晶体管-金属氧化物半导体场效应晶体管多峰值负微分电阻器件.  , 2003, 52(7): 1766-1770. doi: 10.7498/aps.52.1766
计量
  • 文章访问数:  6101
  • PDF下载量:  168
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-03
  • 修回日期:  2016-01-17
  • 刊出日期:  2016-04-05

/

返回文章
返回
Baidu
map