搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

溶液酸碱性对低聚苯亚乙炔基分子结电输运性质的影响

林晓那 张广平 任俊峰 原晓波 胡贵超

引用本文:
Citation:

溶液酸碱性对低聚苯亚乙炔基分子结电输运性质的影响

林晓那, 张广平, 任俊峰, 原晓波, 胡贵超

Electronic transport properties of oligophenyleneethynylene molecular junctions in alkaline and acid solutions

Lin Xiao-Na, Zhang Guang-Ping, Ren Jun-Feng, Yuan Xiao-Bo, Hu Gui-Chao
PDF
导出引用
  • 结合密度泛函理论和非平衡格林函数方法计算了溶液酸碱性对低聚苯亚乙炔基分子结电输运性质的影响,此低聚苯亚乙炔基分子中两个不同位置的H原子被氨基和羧基取代. 通过质子化和去质子化模拟酸性溶液和碱性溶液对分子结构的影响. 计算结果表明:中性环境下分子器件具有良好的导电性和微弱的整流效应;碱性溶液中羧基去质子化后,分子器件电流值增长近一倍,但整流效应变化不明显;酸性溶液中氨基质子化后,分子器件正向偏压导电性能略微降低,但整流方向发生明显反转,且与中性环境下的情况相比,整流比提高了近三倍. 提出了一种利用化学手段控制分子结导电能力和整流性能的方法.
    Using nonequilibrium Green’s function method combined with density functional theory, we theoretically investigate the influences of alkaline and acid solutions on electronic transport properties in oligophenyleneethynylene molecular junctions with amino and carboxylic groups. The numerical results show that comparing with the case of neutral state, the conductance of the molecular junction is double improved and the rectifying direction is inverted when carboxylic group is deprotonated in the alkaline environment. On the other hand, the rectification ratio is enhanced trebly and the rectifying direction is inverted similarly when amino group is protonated in the acid environment. This theoretical work presents a chemically controllable method of manipulating conductance and rectification of molecular junctions.
    • 基金项目: 国家自然科学基金(批准号:10904083,10904084)和山东省高等学校科技计划(批准号:J13LA05)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10904083, 10904084) and the Science and Technology Program of Institution of Higher Education of Shandong Province, China (Grant No. J13LA05).
    [1]

    Xue Y, Ratner M A 2005 Int. J. Quantum Chem. 102 911

    [2]

    Tsutsui M, Taniguchi M 2012 Sensors 12 7259

    [3]

    Yin X, Li Y, Zhang Y, Li P, Zhao J 2006 Chem. Phys. Lett. 422 111

    [4]

    Nitzan A, Ratner M A 2003 Science 300 1384

    [5]

    Fan Z Q, Chen K Q 2010 Appl. Phys. Lett. 96 053509

    [6]

    Guo C, Zhang Z H, Kwong G, Pan J B, Deng X Q, Zhang J J 2012 J. Phys. Chem. C 116 12900

    [7]

    Zhang G P, Hu G C, Li Z L, Wang C K 2012 J. Phys. Chem. C 116 3773

    [8]

    Zhang G P, Hu G C, Li Z L, Wang C K 2011 Chin. Phys. B 20 127304

    [9]

    Aviram A, Ratner M A 1974 Chem. Phys. Lett. 29 277

    [10]

    Zhang G P, Hu G C, Song Y, Xie Z, Wang C K 2013 J. Chem. Phys. 139 094702

    [11]

    Yin Z H, Long Y Z, Huang K, Wan M X, Chen Z J 2009 Chin. Phys. B 18 298

    [12]

    Hao L Z, Liu Y J, Zhu J, Lei H W, Liu Y Y, Tang Z Y, Zhang Y, Zhang W L, Li Y R 2011 Chin. Phys. Lett. 28 107703

    [13]

    Zhao P, Liu D S 2012 Chin. Phys. Lett. 29 047302

    [14]

    Martins T B, Fazzio A, da Silva A J R 2009 Phys. Rev. B 79 115413

    [15]

    Cai Y, Zhang A, Feng Y P, Zhang C 2011 J. Chem. Phys. 135 184703

    [16]

    Zoltowski B D, Schwerdtfeger C, Widom J, Loros J J, Bílwes A M, Dunlap J C, Crane B R 2007 Science 316 1054

    [17]

    Vlassiouk I, Kozel T R, Siwy Z S 2009 J. Am. Chem. Soc. 131 8211

    [18]

    Song H, Reed M A, Lee T 2011 Adv. Mater. 23 1583

    [19]

    Zhang L X, Cao X H, Zheng Y B, Li Y Q 2010 Electrochem. Commun. 12 1249

    [20]

    Morales G M, Jiang P, Yuan S, Lee Y, Sanchez A, You W, Yu L 2005 J. Am. Chem. Soc. 127 10456

    [21]

    Chen F, Li X, Hihath J, Huang Z, Tao N 2006 J. Am. Chem. Soc. 128 15874

    [22]

    Song Y, Zou D Q, Xie Z, Zhang G P, Li Z L, Wang C K 2013 Chem. Phys. Lett. 588 155

    [23]

    Wu S, González M T, Huber R, Grunder S, Mayor M, Schönenberger C, Calame M 2008 Nature Nanotechnol. 3 569

    [24]

    Kostyrko T, García-Suárez V M, Lambert C J, Bulka B R 2010 Phys. Rev. B 81 085308

    [25]

    Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P, Sánchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745

    [26]

    Stokbro K, Taylor J, Brandbyge M, Ordejón P 2003 Ann. N. Y. Acad. Sci. 1006 212

    [27]

    Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [28]

    Datta S 1995 Electron Transport in Mesoscopic Systems (Cambridge: Cambridge University Press) pp22–27

  • [1]

    Xue Y, Ratner M A 2005 Int. J. Quantum Chem. 102 911

    [2]

    Tsutsui M, Taniguchi M 2012 Sensors 12 7259

    [3]

    Yin X, Li Y, Zhang Y, Li P, Zhao J 2006 Chem. Phys. Lett. 422 111

    [4]

    Nitzan A, Ratner M A 2003 Science 300 1384

    [5]

    Fan Z Q, Chen K Q 2010 Appl. Phys. Lett. 96 053509

    [6]

    Guo C, Zhang Z H, Kwong G, Pan J B, Deng X Q, Zhang J J 2012 J. Phys. Chem. C 116 12900

    [7]

    Zhang G P, Hu G C, Li Z L, Wang C K 2012 J. Phys. Chem. C 116 3773

    [8]

    Zhang G P, Hu G C, Li Z L, Wang C K 2011 Chin. Phys. B 20 127304

    [9]

    Aviram A, Ratner M A 1974 Chem. Phys. Lett. 29 277

    [10]

    Zhang G P, Hu G C, Song Y, Xie Z, Wang C K 2013 J. Chem. Phys. 139 094702

    [11]

    Yin Z H, Long Y Z, Huang K, Wan M X, Chen Z J 2009 Chin. Phys. B 18 298

    [12]

    Hao L Z, Liu Y J, Zhu J, Lei H W, Liu Y Y, Tang Z Y, Zhang Y, Zhang W L, Li Y R 2011 Chin. Phys. Lett. 28 107703

    [13]

    Zhao P, Liu D S 2012 Chin. Phys. Lett. 29 047302

    [14]

    Martins T B, Fazzio A, da Silva A J R 2009 Phys. Rev. B 79 115413

    [15]

    Cai Y, Zhang A, Feng Y P, Zhang C 2011 J. Chem. Phys. 135 184703

    [16]

    Zoltowski B D, Schwerdtfeger C, Widom J, Loros J J, Bílwes A M, Dunlap J C, Crane B R 2007 Science 316 1054

    [17]

    Vlassiouk I, Kozel T R, Siwy Z S 2009 J. Am. Chem. Soc. 131 8211

    [18]

    Song H, Reed M A, Lee T 2011 Adv. Mater. 23 1583

    [19]

    Zhang L X, Cao X H, Zheng Y B, Li Y Q 2010 Electrochem. Commun. 12 1249

    [20]

    Morales G M, Jiang P, Yuan S, Lee Y, Sanchez A, You W, Yu L 2005 J. Am. Chem. Soc. 127 10456

    [21]

    Chen F, Li X, Hihath J, Huang Z, Tao N 2006 J. Am. Chem. Soc. 128 15874

    [22]

    Song Y, Zou D Q, Xie Z, Zhang G P, Li Z L, Wang C K 2013 Chem. Phys. Lett. 588 155

    [23]

    Wu S, González M T, Huber R, Grunder S, Mayor M, Schönenberger C, Calame M 2008 Nature Nanotechnol. 3 569

    [24]

    Kostyrko T, García-Suárez V M, Lambert C J, Bulka B R 2010 Phys. Rev. B 81 085308

    [25]

    Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P, Sánchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745

    [26]

    Stokbro K, Taylor J, Brandbyge M, Ordejón P 2003 Ann. N. Y. Acad. Sci. 1006 212

    [27]

    Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [28]

    Datta S 1995 Electron Transport in Mesoscopic Systems (Cambridge: Cambridge University Press) pp22–27

  • [1] 李元, 李春鹏, 李林波, 袁磊, 王亚桢, 石亚轩, 张冠军. 电致伸缩效应下水中电子输运特性.  , 2024, 73(11): 114701. doi: 10.7498/aps.73.20231893
    [2] 廖天军, 杨智敏, 林比宏. 基于电荷和热输运的石墨烯热电子器件性能优化.  , 2021, 70(22): 227901. doi: 10.7498/aps.70.20211110
    [3] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 陈爱民, 杨爱云, 张婷婷, 刘洋. 基于石墨烯电极的齐聚苯乙炔分子器件的整流特性.  , 2018, 67(11): 118501. doi: 10.7498/aps.67.20180088
    [4] 冯琦, 张忻, 刘洪亮, 赵吉平, 江浩, 肖怡新, 李凡, 张久兴. [Ca24Al28O64]4+:4e-电子化合物的制备及其电输运特性.  , 2018, 67(4): 047102. doi: 10.7498/aps.67.20171941
    [5] 俎凤霞, 张盼盼, 熊伦, 殷勇, 刘敏敏, 高国营. 以石墨烯为电极的有机噻吩分子整流器的设计及电输运特性研究.  , 2017, 66(9): 098501. doi: 10.7498/aps.66.098501
    [6] 辛建国, 杨传路, 王美山, 马晓光. (CH3)2和(NH2)2基团修饰的齐聚苯乙炔分子电子输运性质研究.  , 2016, 65(7): 073102. doi: 10.7498/aps.65.073102
    [7] 陈鹰, 胡慧芳, 王晓伟, 张照锦, 程彩萍. B/N掺杂类直三角石墨烯纳米带器件引起的整流效应.  , 2015, 64(19): 196101. doi: 10.7498/aps.64.196101
    [8] 刘然, 包德亮, 焦扬, 万令文, 李宗良, 王传奎. 1,4-丁二硫醇分子器件电输运性质的力敏特性研究.  , 2014, 63(6): 068501. doi: 10.7498/aps.63.068501
    [9] 李振武. Kondo效应对磁杂质碳纳米管电输运特性的影响.  , 2013, 62(9): 096101. doi: 10.7498/aps.62.096101
    [10] 张茂平, 钟伟荣, 艾保全. 非对称双链分子结构的热整流效应.  , 2011, 60(6): 060511. doi: 10.7498/aps.60.060511
    [11] 郭超, 张振华, 潘金波, 张俊俊. D-B-A分子整流特性的端基效应.  , 2011, 60(11): 117303. doi: 10.7498/aps.60.117303
    [12] 潘金波, 张振华, 邱明, 郭超. 分子整流器整流特性的键桥调控效应.  , 2011, 60(3): 037302. doi: 10.7498/aps.60.037302
    [13] 邓小清, 周继承, 张振华. 端基对分子器件整流性质的影响.  , 2010, 59(4): 2714-2720. doi: 10.7498/aps.59.2714
    [14] 万冀豫, 金克新, 谭兴毅, 陈长乐. Pr0.5Ca0.5MnO3/Si异质结输运特性和整流特性研究.  , 2010, 59(11): 8137-8141. doi: 10.7498/aps.59.8137
    [15] 李巧华, 张振华, 刘新海, 邱明, 丁开和. 分子电子器件简化模型的电子透射谱的计算.  , 2009, 58(10): 7204-7210. doi: 10.7498/aps.58.7204
    [16] 夏蔡娟, 房常峰, 胡贵超, 李冬梅, 刘德胜, 解士杰, 赵明文. 官能团对分子器件电输运特性的影响.  , 2008, 57(5): 3148-3154. doi: 10.7498/aps.57.3148
    [17] 夏蔡娟, 房常峰, 胡贵超, 李冬梅, 刘德胜, 解士杰. 分子的位置取向对分子器件电输运特性的影响.  , 2007, 56(8): 4884-4890. doi: 10.7498/aps.56.4884
    [18] 邹 斌, 李宗良, 王传奎, 薛其坤. 电极距离对分子器件电输运特性的影响.  , 2005, 54(3): 1341-1346. doi: 10.7498/aps.54.1341
    [19] 周剑平, 陈诺夫, 宋书林, 柴春林, 杨少延, 刘志凯, 林兰英. Si被注入Gd后的磁性及其整流特性的研究.  , 2003, 52(6): 1469-1473. doi: 10.7498/aps.52.1469
    [20] 李英德, 李红海, 王传奎. 分子线的电子输运特性.  , 2002, 51(10): 2349-2354. doi: 10.7498/aps.51.2349
计量
  • 文章访问数:  5766
  • PDF下载量:  463
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-06
  • 修回日期:  2013-11-16
  • 刊出日期:  2014-03-05

/

返回文章
返回
Baidu
map