搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超高场磁共振成像的现状和展望

覃柏霖 高家红

引用本文:
Citation:

超高场磁共振成像的现状和展望

覃柏霖, 高家红

Current status and perspectives of ultrahigh-field magnetic resonance imaging

QIN Bolin, GAO Jiahong
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 超高场磁共振成像(ultra-high field magnetic resonance imaging, UHF-MRI)是主磁场强度为7 T及以上磁共振成像的统称. 与传统磁共振成像相比, UHF-MRI具有更高的信噪比和对比度. 因此, 在临床医学及神经科学等领域, 该技术的运用能够显著提高信号的探测灵敏度和图像的空间分辨率, 从而提供更丰富的生理病理信息. 目前, UHF-MRI在大脑功能和代谢成像两个方面发挥了重要的作用. 在脑功能研究方面, 高分辨率的皮层功能柱和分层成像有助于揭示神经信息流的方向; 在脑代谢研究中, 氢核与多核的波谱及成像技术提供了更精确的代谢信息, 有望在功能性和代谢性疾病的病理研究中取得重要突破. 本文介绍了UHF-MRI的发展历史和理论基础, 梳理了其关键优势及在脑功能和代谢成像应用研究中的现状, 总结了当前面临的挑战, 并提出了未来重点研究方向.
    Magnetic resonance imaging (MRI) is one of the most important imaging modalities used in contemporary clinical radiology research and diagnostic practice due to its non-invasive nature, absence of ionizing radiation, high soft tissue contrast, and diverse imaging capabilities. Nevertheless, traditional MRI systems are limited by a relatively low signal-to-noise ratio (SNR), which can be enhanced by increasing the strength of the main magnetic field. Ultra-high field MRI (UHF-MRI) typically refers to MRI systems with a main magnetic field strength of 7 T or higher. The UHF-MRI improves image SNR and extends the boundaries of spatial resolution and detection sensitivity. These advancements not only provide clinicians with richer and more accurate physiological and pathological information but also open new avenues for research on life sciences and cognitive neuroscience.Currently, the UHF-MRI plays a pivotal role in brain functional and metabolic imaging. In the brain function research, the implementation of high-resolution mesoscale functional imaging techniques has enabled the investigation of laminar-specific neuronal activity within cortical layers, including feedforward and feedback neural information processing pathways. In metabolic studies, the application of hydrogen and multi-nuclear spectroscopy and imaging has yielded more accurate metabolic data, thereby holding substantial promise for advancing our understanding of the pathophysiology underlying functional and metabolic diseases. However, the UHF-MRI is also subject to certain limitations, including issues related to radio-frequency (RF) field in homogeneity, elevated specific absorption ratio (SAR), and susceptibility artifacts.In this paper, the historical evolution and theoretical underpinnings of UHF-MRI are reviewed, its principal advantages over low-field MRI is elucidated, and the contemporary research on UHF-MRI applications in human brain function and metabolic imaging research are integrated together. Furthermore, the technical limitations associated with UHF-MRI implementation are critically examined and the potential avenues are proposed for the future research direction.
  • 图 1  不同场强(3 T与7 T)下的${T_1}$加权成像与二维EPI图像, 图像采集自北京大学磁共振成像研究中心, 扫描仪型号分别为西门子MAGNETOM Prisma 3 T和西门子MAGNETOM Terra 7 T, 受试者为同一位健康成年男性 (a) 3 T在1 mm×1 mm×1 mm分辨率下的磁化强度准备快速梯度回波(magnetization prepared rapid gradient echo, MPRAGE)图像(重复时间(repetition time, TR)= 2530 ms, 回波时间(echo time, TE)= 2.98 ms, 反转时间(inversion time, TI)= 1100 ms, 采集时间(acquisition time, TA)= 5∶56); (b) 7 T在0.65 mm各向同性分辨率下的磁化强度准备双快速梯度回波(magnetization prepared 2 rapid gradient echo, MP2 RAGE)图像(TR = 5000 ms, TE = 2.05 ms, TI1/TI2 = 900/2750 ms, TA = 10∶57); (c) 3 T在2 mm各向同性分辨率下的EPI图像(TR = 2000 ms, TE = 30 ms, 翻转角(flip angle, FA)= 90°, 回波间隙(echo spacing, ES)= 0.54 ms); (d) 7 T在2 mm各向同性分辨率下的EPI图像(TR = 2000 ms, TE = 22 ms, FA = 90°, ES = 0.53 ms); (e) 7 T在0.85 mm各向同性分辨率下的EPI图像(TR = 2000 ms, TE = 27 ms, FA = 70°, ES = 1.08 ms)

    Fig. 1.  Comparison of ${T_1}$-weighted images and 2D-EPI on different magnetic fields (3 T vs. 7 T), images were acquired from the same healthy male adult volunteer on MAGNETOM Prisma 3 T and MAGNETOM Terra 7 T (Siemens Healthcare, Erlangen, Germany) at Center for MRI Research, Peking University: (a) 3 T MPRAGE image at 1 mm×1 mm×1 mm resolution (TR = 2530 ms, TE = 2.98 ms, TI = 1100 ms, TA = 5∶56); (b) 7 T MP2 RAGE image at 0.65 mm isotropic resolution (TR = 5000 ms, TE = 2.05 ms, TI1/TI2 = 900/2750 ms, TA = 10∶57); (c) 3 T 2D-EPI images at 2 mm isotropic resolution (TR = 2000 ms, TE = 30 ms, FA = 90°, ES = 0.54 ms); (d) 7 T 2D-EPI images at 2 mm isotropic resolution (TR = 2000 ms, TE = 22 ms, FA = 90°, ES = 0.53 ms); (e) 7 T 2D-EPI images at 0.85 mm isotropic resolution (TR = 2000 ms, TE = 27 ms, FA = 70°, ES = 1.08 ms).

    图 2  7 T大脑动脉和静脉血管结构成像, 图像采集自北京大学磁共振成像研究中心, 扫描仪型号为西门子MAGNETOM Terra 7 T, 受试者为健康成年男性 (a) TOF成像在横断面的最大值投影(0.2 mm×0.2 mm×0.4 mm插值重建, TR = 35 ms, TE = 3.78 ms, TA = 13:54); (b) SWI成像在横断面的最小值投影(0.12 mm×0.12 mm×1.5 mm插值重建, TR = 21 ms, TE = 14 ms, TA = 7∶27)

    Fig. 2.  7 T brain arteries and veins structure imaging. Images were acquired from a healthy male adult volunteer on MAGNETOM Terra 7 T (Siemens Healthcare, Erlangen, Germany) at Center for MRI Research, Peking University: (a) Maximum intensity projection on transversal TOF image (0.2 mm×0.2 mm×0.4 mm interpolated reconstruction, TR = 35 ms, TE = 3.78 ms, TA = 13:54); (b) minimum intensity projection on transversal SWI image (0.12 mm×0.12 mm×1.5 mm interpolated reconstruction, TR = 21 ms, TE = 14 ms, TA = 7∶27).

    图 3  手指运动任务的7 T脑功能成像, 图像采集自北京大学磁共振成像研究中心, 扫描仪型号为西门子MAGNETOM Terra 7 T, 受试者为健康成年男性, 使用VASO序列[50](0.8 mm×0.8 mm×1.3 mm, TR1/TR2 = 69/4419 ms, TE = 25.4 ms, FA = 45°, ES = 1.1 ms) (a) VASO图像激活图; (b) BOLD图像激活图; (c) 皮层分层感兴趣区(region of interest, ROI); (d) 皮层分层激活分布(信号相对变化)与皮层深度的关系, 灰质(gray matter, GM)最浅处边界为脑脊液(cerebral spinal fluid, CSF), 最深处边界为白质(white matter, WM), 蓝色曲线为BOLD激活分布, 红色曲线为VASO激活分布, 曲线中的误差棒为每个分层ROI的统计样本标准差

    Fig. 3.  7 T fMRI on finger-tapping task. VASO sequence[50] (0.8 mm×0.8 mm×1.3 mm, TR1/TR2 = 69/4419 ms, TE = 25.4 ms, FA = 45°, ES = 1.1 ms) was implemented from a healthy male adult volunteer on MAGNETOM Terra 7 T (Siemens Healthcare, Erlangen, Germany) at Center for MRI Research, Peking University: (a) VASO activation; (b) BOLD activation; (c) layer ROI; (d) laminar profile of percent signal change activation for BOLD (blue) and VASO (red), the error bars represent the sample standard deviation within each layer.

    图 4  后扣带回皮质(posterior cingulate cortex, PCC)的7 T 1H-MRS, 数据采集自北京大学磁共振成像研究中心, 扫描仪型号为西门子MAGNETOM Terra 7 T, 受试者为健康成年女性, 使用semi-LASER序列[158](20 mm×20 mm×20 mm, TR = 5000 ms, TE1/TE2/TE3 = 7/10/9 ms, FA = 45°, 平均次数(Averages) = 64) (a) PCC体素位置; (b) 7 T PCC 1H-MRS及一些代谢物谱峰分布

    Fig. 4.  In vivo 1H-MRS on PCC using semi-LASER sequence (20 mm×20 mm×20 mm, TR = 5000 ms, TE1/TE2/TE3 = 7/10/9 ms, FA = 45°, Averages = 64) from a healthy female adult volunteer on MAGNETOM Terra 7 T (Siemens Healthcare, Erlangen, Germany) at Center for MRI Research, Peking University: (a) PCC voxel location; (b) 7 T PCC 1H-MRS and metabolites.

    图 5  人脑7 T 23Na磁共振成像(图像由中国科学院生物物理研究所提供, 扫描仪型号为西门子MAGNETOM Terra 7 T, 使用苏州众志医疗公司提供的23Na-1H双频头部线圈, 受试者为健康成年男性), 使用超短回波(UTE, ultra-short TE)序列(2.5 mm×2.5 mm×2.5 mm, TR = 12.8 ms, TE = 0.27 ms, FA = 19°, TA = 4∶25) (a) 矢状面; (b) 冠状面; (c) 横断面

    Fig. 5.  In vivo 23Na MRI of human brain at 7 T, UTE sequence (2.5 mm×2.5 mm×2.5 mm, TR = 12.8 ms, TE = 0.27 ms, FA = 19°, TA = 4∶25) was implemented from a healthy male adult volunteer on MAGNETOM Terra 7 T (Siemens Healthcare, Erlangen, Germany): (a) Sagittal; (b) coronal; (c) axial, images courtesy of Institute of Biophysics, Chinese Academy of Sciences.

    图 6  7 T MRI射频场在圆极化(circular polarized, CP)模式下人脑成像的FA分布图(数据采集自北京大学磁共振成像研究中心, 扫描仪型号为西门子MAGNETOM Terra 7 T, 受试者为健康成年男性)

    Fig. 6.  FA map covering the brain on the 7 T scanner in CP mode, images were acquired from a healthy male adult volunteer on MAGNETOM Terra 7 T (Siemens Healthcare, Erlangen, Germany) at Center for MRI Research, Peking University.

    Baidu
  • [1]

    Uǧurbil K 2014 IEEE Trans. Biomed. Eng. 61 1364Google Scholar

    [2]

    Lauterbur P C 1973 Nature 242 5394

    [3]

    Bomsdorf H, Helzel T, Kunz D, Röschmann P, Tschendel O, Wieland J 1988 NMR Biomed. 1 151Google Scholar

    [4]

    Barfuss H, Fischer H, Hentschel D, Ladebeck R, Oppelt A, Wittig R, Duerr W, Oppelt R 1990 NMR Biomed. 3 31Google Scholar

    [5]

    Bomsdorf H, Röschmann P, Wieland J 1991 Magn. Reson. Med. 22 10Google Scholar

    [6]

    Uǧurbil K, Garwood M, Ellermann J, Hendrich K, Hinke R, Hu X, Kim S G, Menon R, Merkle H, Ogawa S 1993 Magn. Reson. Q. 9 259

    [7]

    Ogawa S, Tank D W, Menon R, Ellermann J M, Kim S G, Merkle H, Uǧurbil K 1992 Proc. Natl. Acad. Sci. 89 5951Google Scholar

    [8]

    Robitaille P M L, Abduljalil A M, Kangarlu A, Zhang X, Yu Y, Burgess R, Bair S, Noa P, Yang L, Zhu H, Palmer B, Jiang Z, Chakeres D M, Spigos D 1998 NMR Biomed. 11 263Google Scholar

    [9]

    Robitaille P M L, Abduljalil A M, Kangarlu A 2000 J. Comput. Assist. Tomogr. 24 2Google Scholar

    [10]

    Vaughan J T, Garwood M, Collins C M, Liu W, DelaBarre L, Adriany G, Andersen P, Merkle H, Goebel R, Smith M B, Uǧurbil K 2001 Magn. Reson. Med. 46 24Google Scholar

    [11]

    Yacoub E, Shmuel A, Pfeuffer J, Van De Moortele P F, Adriany G, Andersen P, Vaughan J T, Merkle H, Uǧurbil K, Hu X 2001 Magn. Reson. Med. 45 588Google Scholar

    [12]

    Feinberg D A, Beckett A J S, Vu A T, Stockmann J, Huber L, Ma S, Ahn S, Setsompop K, Cao X, Park S, Liu C, Wald L L, Polimeni J R, Mareyam A, Gruber B, Stirnberg R, Liao C, Yacoub E, Davids M, Bell P, Rummert E, Koehler M, Potthast A, Gonzalez-Insua I, Stocker S, Gunamony S, Dietz P 2023 Nat. Methods 20 2048Google Scholar

    [13]

    Thulborn K R 2006 Ultra High Field Magnetic Resonance Imaging (Boston, MA: Springer US) pp105—126

    [14]

    Vaughan T, DelaBarre L, Snyder C, Tian J, Akgun C, Shrivastava D, Liu W, Olson C, Adriany G, Strupp J, Andersen P, Gopinath A, Van De Moortele P F, Garwood M, Uǧurbil K 2006 Magn. Reson. Med. 56 1274Google Scholar

    [15]

    Ivanov D, De Martino F, Formisano E, Fritz F J, Goebel R, Huber L, Kashyap S, Kemper V G, Kurban D, Roebroeck A, Sengupta S, Sorger B, Tse D H Y, Uludaǧ K, Wiggins C J, Poser B A 2023 Magn. Reson. Mater. Phys. Biol. Med. 36 159Google Scholar

    [16]

    Atkinson I C, Renteria L, Burd H, Pliskin N H, Thulborn K R 2007 J. Magn. Reson. Imaging 26 1222Google Scholar

    [17]

    Geldschläger O, Bosch D, Avdievich N I, Henning A 2021 Magn. Reson. Med. 85 1013Google Scholar

    [18]

    Sadeghi-Tarakameh A, DelaBarre L, Lagore R L, Torrado-Carvajal A, Wu X, Grant A, Adriany G, Metzger G J, Van De Moortele P F, Uǧurbil K, Atalar E, Eryaman Y 2020 Magn. Reson. Med. 84 484Google Scholar

    [19]

    Quettier L, Aubert G, Amadon A, Belorgey J, Berriaud C, Bonnelye C, Boulant N, Bredy Ph, Dilasser G, Dubois O, Gilgrass G, Gras V, Guihard Q, Jannot V, Juster F P, Lannou H, Lepretre F, Lerman C, Le Ster C, Mauconduit F, Molinié F, Nunio F, Scola L, Sinanna A, Touzery R, Védrine P, Vignaux A 2023 IEEE Trans. Appl. Supercond. 33 4400607

    [20]

    Boulant N, Quettier L, Aubert G, Amadon A, Belorgey J, Berriaud C, Bonnelye C, Bredy Ph, Chazel E, Dilasser G, Dubois O, Giacomini E, Gilgrass G, Gras V, Guihard Q, Jannot V, Juster F P, Lannou H, Leprêtre F, Lerman C, Le Ster C, Luong M, Mauconduit F, Molinié F, Nunio F, Scola L, Sinanna A, Touzery R, Védrine P, Vignaud A, the Iseult Consortium 2023 Magn. Reson. Mater. Phys. Biol. Med. 36 175Google Scholar

    [21]

    Boulant N, Mauconduit F, Gras V, Amadon A, Le Ster C, Luong M, Massire A, Pallier C, Sabatier L, Bottlaender M, Vignaud A, Le Bihan D 2024 Nat. Methods 21 2013Google Scholar

    [22]

    Eisenstein M 2024 Nat. Methods 21 1975Google Scholar

    [23]

    Zhang Y F, Yang C, Liang L, Shi Z, Zhu S, Chen C Z, Dai Y M, Zeng M S 2022 J. Magn. Reson. Imaging 56 1009Google Scholar

    [24]

    Shi Z, Zhao X Y, Zhu S, Miao X Y, Zhang Y F, Han S H, Wang B, Zhang B Y, Ye X D, Dai Y M, Chen C Z, Rao S X, Lin J, Zeng M S, Wang H 2023 Radiology 306 207Google Scholar

    [25]

    Bloch F 1946 Phys. Rev. 70 460Google Scholar

    [26]

    Edelstein W A, Glover G H, Hardy C J, Redington R W 1986 Magn. Reson. Med. 3 604Google Scholar

    [27]

    Ertürk M A, Wu X, Eryaman Y, Van De Moortele P F, Auerbach E J, Lagore R L, DelaBarre L, Vaughan J T, Uǧurbil K, Adriany G, Metzger G J 2017 Magn. Reson. Med. 77 434Google Scholar

    [28]

    Pohmann R, Speck O, Scheffler K 2016 Magn. Reson. Med. 75 801Google Scholar

    [29]

    Guérin B, Villena J F, Polimeridis A G, Adalsteinsson E, Daniel L, White J K, Wald L L 2017 Magn. Reson. Med. 78 1969Google Scholar

    [30]

    Uǧurbil K, Adriany G, Andersen P, Chen W, Garwood M, Gruetter R, Henry P G, Kim S G, Lieu H, Tkac I, Vaughan T, Van De Moortele P F, Yacoub E, Zhu X H 2003 Magn. Reson. Imaging 21 1263Google Scholar

    [31]

    Tkáč I, Andersen P, Adriany G, Merkle H, Uǧurbil K, Gruetter R 2001 Magn. Reson. Med. 46 451Google Scholar

    [32]

    Yang S L, Hu J N, Kou Z F, Yang Y H 2008 Magn. Reson. Med. 59 236Google Scholar

    [33]

    Mangia S, Tkáč I, Gruetter R, Van De Moortele P F, Maraviglia B, Uǧurbil K 2007 J. Cereb. Blood Flow Metab. 27 1055Google Scholar

    [34]

    Atkinson I C, Thulborn K R 2010 NeuroImage 51 723Google Scholar

    [35]

    Lei H, Uǧurbil K, Chen W 2003 Proc. Natl. Acad. Sci. 100 14409Google Scholar

    [36]

    Chen W, Zhu X H, Gruetter R, Seaquist E R, Adriany G, Uǧurbil K 2001 Magn. Reson. Med. 45 349Google Scholar

    [37]

    Von Morze C, Xu D, Purcell D D, Hess C P, Mukherjee P, Saloner D, Kelley D A C, Vigneron D B 2007 J. Magn. Reson. Imaging 26 900Google Scholar

    [38]

    Peters A M, Brookes M J, Hoogenraad F G, Gowland P A, Francis S T, Morris P G, Bowtell R 2007 Magn. Reson. Imaging 25 748Google Scholar

    [39]

    Dumoulin S O, Fracasso A, Van Der Zwaag W, Siero J C W, Petridou N 2018 NeuroImage 168 345Google Scholar

    [40]

    Uludaǧ K, Blinder P 2018 NeuroImage 168 279Google Scholar

    [41]

    Olman C A, Inati S, Heeger D J 2007 NeuroImage 34 1126Google Scholar

    [42]

    Uludaǧ K, Müller-Bierl B, Uǧurbil K 2009 NeuroImage 48 150Google Scholar

    [43]

    Ogawa S, Menon R S, Tank D W, Kim S G, Merkle H, Ellermann J M, Uǧurbil K 1993 Biophys. J. 64 803Google Scholar

    [44]

    Koopmans P J, Yacoub E 2019 NeuroImage 197 668Google Scholar

    [45]

    Pfeuffer J, Adriany G, Shmuel A, Yacoub E, Van De Moortele P F, Hu X, Uǧurbil K 2002 Magn. Reson. Med. 47 903Google Scholar

    [46]

    Golay X, Petersen E T 2006 Neuroimaging Clin. N. Am. 16 259Google Scholar

    [47]

    Gardener A G, Gowland P A, Francis S T 2009 Magn. Reson. Med. 61 874Google Scholar

    [48]

    Lu H, Hua J, Van Zijl P C M 2013 NMR Biomed. 26 932Google Scholar

    [49]

    Hua J, Jones C K, Qin Q, Van Zijl P C M 2013 Magn. Reson. Med. 69 1003Google Scholar

    [50]

    Huber L, Ivanov D, Krieger S N, Streicher M N, Mildner T, Poser B A, Möller H E, Turner R 2014 Magn. Reson. Med. 72 137Google Scholar

    [51]

    Yacoub E, Harel N, Uǧurbil K 2008 Proc. Natl. Acad. Sci. 105 10607Google Scholar

    [52]

    Fischl B, Dale A M 2000 Proc. Natl. Acad. Sci. 97 11050Google Scholar

    [53]

    Brodmann K 1909 Vergleichende Lokalisationslehre Der Großhirnrinde in Ihren Prinzipien Dargestellt Auf Grund Des Zellenbaues (Leipzig: Barth-Verlag) pp13—42

    [54]

    Rockland K S, Pandya D N 1979 Brain Res. 179 3Google Scholar

    [55]

    Maunsell J H, Van Essen D C 1983 J. Neurosci. 3 2563Google Scholar

    [56]

    Felleman D J, Van Essen D C 1991 Cereb. Cortex 1 1

    [57]

    Huber L, Finn E S, Chai Y, Goebel R, Stirnberg R, Stöcker T, Marrett S, Uludaǧ K, Kim S G, Han S, Bandettini P A, Poser B A 2021 Prog. Neurobiol. 207 101835Google Scholar

    [58]

    Feinberg D A, Hoenninger J C, Crooks L E, Kaufman L, Watts J C, Arakawa M 1985 Radiology 156 743Google Scholar

    [59]

    Schluppeck D, Sanchez-Panchuelo R-M, Francis S T 2018 NeuroImage 164 10Google Scholar

    [60]

    Kok P, Bains L J, Van Mourik T, Norris D G, De Lange F P 2016 Curr. Biol. 26 371Google Scholar

    [61]

    Jia K, Goebel R, Kourtzi Z 2023 Annu. Rev. Vis. Sci. 9 479Google Scholar

    [62]

    Lawrence S J D, Van Mourik T, Kok P, Koopmans P J, Norris D G, De Lange F P 2018 Curr. Biol. 28 3435Google Scholar

    [63]

    Qian Y, Zou J, Zhang Z, An J, Zuo Z, Zhuo Y, Wang D J J, Zhang P 2020 Proc. R. Soc. B Biol. Sci. 287 20200245Google Scholar

    [64]

    Jia K, Zamboni E, Kemper V, Rua C, Goncalves N R, Ng A K T, Rodgers C T, Williams G, Goebel R, Kourtzi Z 2020 Curr. Biol. 30 4177Google Scholar

    [65]

    Liu C, Guo F, Qian C, Zhang Z, Sun K, Wang D J, He S, Zhang P 2021 Prog. Neurobiol. 207 101897Google Scholar

    [66]

    Ge Y J, Zhou H, Qian C C, Zhang P, Wang L, He S 2020 Nat. Commun. 11 3925Google Scholar

    [67]

    Aitken F, Menelaou G, Warrington O, Koolschijn R S, Corbin N, Callaghan M F, Kok P 2020 PLOS Biol. 18 e3001023Google Scholar

    [68]

    Ng A K T, Jia K, Goncalves N R, Zamboni E, Kemper V G, Goebel R, Welchman A E, Kourtzi Z 2021 J. Neurosci. 41 8362Google Scholar

    [69]

    Liu T T, Fu J Z, Chai Y, Japee S, Chen G, Ungerleider L G, Merriam E P 2022 Nat. Commun. 13 1

    [70]

    Haarsma J, Deveci N, Corbin N, Callaghan M F, Kok P 2023 J. Neurosci. 43 7946Google Scholar

    [71]

    Bergmann J, Petro L S, Abbatecola C, Li M S, Morgan A T, Muckli L 2024 Nat. Commun. 15 1002Google Scholar

    [72]

    Chai Y, Liu T T, Marrett S, Li L, Khojandi A, Handwerker D A, Alink A, Muckli L, Bandettini P A 2021 Prog. Neurobiol. 205 102121Google Scholar

    [73]

    De Martino F, Moerel M, Uǧurbil K, Goebel R, Yacoub E, Formisano E 2015 Proc. Natl. Acad. Sci. 112 16036Google Scholar

    [74]

    Moerel M, De Martino F, Uǧurbil K, Yacoub E, Formisano E 2019 Sci. Rep. 9 5502Google Scholar

    [75]

    Ahveninen J, Chang W T, Huang S, Keil B, Kopco N, Rossi S, Bonmassar G, Witzel T, Polimeni J R 2016 NeuroImage 143 116Google Scholar

    [76]

    Moerel M, Yacoub E, Gulban O F, Lage-Castellanos A, De Martino F 2021 Prog. Neurobiol. 207 101887Google Scholar

    [77]

    Faes L K, Martino F D, Huber L 2023 PLoS One 18 e0280855Google Scholar

    [78]

    Heynckes M, Lage-Castellanos A, De Weerd P, Formisano E, De Martino F 2023 Curr. Res. Neurobiol. 4 100075Google Scholar

    [79]

    Faes L K, Lage-Castellanos A, Valente G, Yu Z D, Cloos M A, Vizioli L, Moeller S, Yacoub E, De Martino F 2024 Imaging Neurosci. 2 1

    [80]

    Huber L, Handwerker D A, Jangraw D C, Chen G, Hall A, Stüber C, Gonzalez-Castillo J, Ivanov D, Marrett S, Guidi M, Goense J, Poser B A, Bandettini P A 2017 Neuron 96 1253Google Scholar

    [81]

    Yu Y H, Huber L, Yang J J, Jangraw D C, Handwerker D A, Molfese P J, Chen G, Ejima Y, Wu J L, Bandettini P A 2019 Sci. Adv. 5 eaav9053Google Scholar

    [82]

    Persichetti A S, Avery J A, Huber L, Merriam E P, Martin A 2020 Curr. Biol. 30 1721Google Scholar

    [83]

    Yang J J, Huber L, Yu Y H, Bandettini P A 2021 Neurosci. Biobehav. Rev. 128 467Google Scholar

    [84]

    Kalyani A, Contier O, Klemm L, Azañon E, Schreiber S, Speck O, Reichert C, Kuehn E 2023 NeuroImage 283 120430Google Scholar

    [85]

    Huber L, Kassavetis P, Gulban O F, Hallett M, Horovitz S G 2023 Dystonia 2 10806Google Scholar

    [86]

    Finn E S, Huber L, Jangraw D C, Molfese P J, Bandettini P A 2019 Nat. Neurosci. 22 10

    [87]

    Koster R, Chadwick M J, Chen Y, Berron D, Banino A, Düzel E, Hassabis D, Kumaran D 2018 Neuron 99 1342Google Scholar

    [88]

    Maass A, Schütze H, Speck O, Yonelinas A, Tempelmann C, Heinze H J, Berron D, Cardenas-Blanco A, Brodersen K H, Enno Stephan K, Düzel E 2014 Nat. Commun. 5 1

    [89]

    Zhang K H, Chen L Y, Li Y H, Paez A G, Miao X Y, Cao D, Gu C M, Pekar J J, Van Zijl P C M, Hua J, Bakker A 2023 J. Neurosci. 43 2874Google Scholar

    [90]

    Sharoh D, Van Mourik T, Bains L J, Segaert K, Weber K, Hagoort P, Norris D G 2019 Proc. Natl. Acad. Sci. 116 21185Google Scholar

    [91]

    Zhan M, Pallier C, Agrawal A, Dehaene S, Cohen L 2023 Sci. Adv. 9 eadf6140Google Scholar

    [92]

    Margalit E, Jamison K W, Weiner K S, Vizioli L, Zhang R Y, Kay K N, Grill-Spector K 2020 J. Neurosci. 40 3008Google Scholar

    [93]

    Gau R, Bazin P L, Trampel R, Turner R, Noppeney U 2020 eLife 9 e46856Google Scholar

    [94]

    Finn E S, Huber L, Bandettini P A 2021 Prog. Neurobiol. 207 101930Google Scholar

    [95]

    Van Dijk J A, Fracasso A, Petridou N, Dumoulin S O 2021 Curr. Biol. 31 4635Google Scholar

    [96]

    Deshpande G, Wang Y, Robinson J 2022 Brain Inform. 9 2Google Scholar

    [97]

    Deshpande G, Zhao X, Robinson J 2022 NeuroImage 254 119078Google Scholar

    [98]

    Chai Y H, Morgan A T, Handwerker D A, Li L Q, Huber L, Sutton B P, Bandettini P A 2024 Imaging Neurosci. 2 1

    [99]

    Rajimehr R, Xu H, Farahani A, Kornblith S, Duncan J, Desimone R 2024 Neuron 112 4130Google Scholar

    [100]

    Polimeni J R, Renvall V, Zaretskaya N, Fischl B 2018 NeuroImage 168 296Google Scholar

    [101]

    Kashyap S, Ivanov D, Havlicek M, Poser B A, Uludaǧ K 2018 NeuroImage 168 332Google Scholar

    [102]

    Yun S D, Küppers F, Shah N J 2024 J. Magn. Reson. Imaging 59 747Google Scholar

    [103]

    Vizioli L, Moeller S, Dowdle L, Akçakaya M, De Martino F, Yacoub E, Uǧurbil K 2021 Nat. Commun. 12 1Google Scholar

    [104]

    Iyyappan Valsala P, Veldmann M, Bosch D, Scheffler K, Ehses P 2024 Magn. Reson. Med. 92 186Google Scholar

    [105]

    Knudsen L, Bailey C J, Blicher J U, Yang Y, Zhang P, Lund T E 2023 NeuroImage 271 120011Google Scholar

    [106]

    Demirel Ö B, Moeller S, Vizioli L, Yaman B, Dowdle L, Yacoub E, Uǧurbil K, Akçakaya M 2023 11th International IEEE/EMBS Conference on Neural Engineering (NER) Baltimore, MD, USA, April 24—27, 2023 p1

    [107]

    Lawrence S J D, Formisano E, Muckli L, De Lange F P 2019 NeuroImage 197 785Google Scholar

    [108]

    McColgan P, Joubert J, Tabrizi S J, Rees G 2020 Nat. Rev. Neurosci. 21 8

    [109]

    Schreiber S, Northall A, Weber M, Vielhaber S, Kuehn E 2021 Nat. Rev. Neurosci. 22 68

    [110]

    Kwong K K, Belliveau J W, Chesler D A, Goldberg I E, Weisskoff R M, Poncelet B P, Kennedy D N, Hoppel B E, Cohen M S, Turner R 1992 Proc. Natl. Acad. Sci. 89 5675Google Scholar

    [111]

    Shao X F, Guo F H, Shou Q Y, Wang K, Jann K, Yan L R, Toga A W, Zhang P, Wang D J J 2021 NeuroImage 245 118724Google Scholar

    [112]

    Buxton R B 2005 J. Magn. Reson. Imaging 22 723Google Scholar

    [113]

    Lu H, Golay X, Pekar J J, Van Zijl P C M 2003 Magn. Reson. Med. 50 263Google Scholar

    [114]

    Davis T L, Kwong K K, Weisskoff R M, Rosen B R 1998 Proc. Natl. Acad. Sci. 95 1834Google Scholar

    [115]

    Hoge R D, Atkinson J, Gill B, Crelier G R, Marrett S, Pike G B 1999 Magn. Reson. Med. 42 849Google Scholar

    [116]

    Kim S G, Rostrup E, Larsson H B W, Ogawa S, Paulson O B 1999 Magn. Reson. Med. 41 1152Google Scholar

    [117]

    Huber L, Uludaǧ K, Möller H E 2019 NeuroImage 197 742Google Scholar

    [118]

    Logothetis N K 2008 Nature 453 869Google Scholar

    [119]

    Polimeni J R, Lewis L D 2021 Prog. Neurobiol. 207 102174Google Scholar

    [120]

    Jasanoff A 2007 Trends Neurosci. 30 603Google Scholar

    [121]

    Uǧurbil K, Toth L, Kim D S 2003 Trends Neurosci. 26 108Google Scholar

    [122]

    Uludaǧ K, Havlicek M 2021 Prog. Neurobiol. 207 102055Google Scholar

    [123]

    O’Herron P, Chhatbar P Y, Levy M, Shen Z, Schramm A E, Lu Z, Kara P 2016 Nature 534 378Google Scholar

    [124]

    Menon R S, Kim S G 1999 Trends Cogn. Sci. 3 207Google Scholar

    [125]

    Bandettini P A, Petridou N, Bodurka J 2005 Appl. Magn. Reson. 29 65Google Scholar

    [126]

    Bodurka J, Bandettini P A 2002 Magn. Reson. Med. 47 1052Google Scholar

    [127]

    Luo Q, Gao J H 2010 Magn. Reson. Med. 64 1832Google Scholar

    [128]

    Xiong J, Fox P T, Gao J H 2003 Hum. Brain Mapp. 20 41Google Scholar

    [129]

    Luo Q F, Lu H, Lu H B, Senseman D, Worsley K, Yang Y H, Gao J H 2009 NeuroImage 47 1268Google Scholar

    [130]

    Jiang X, Lu H, Shigeno S, Tan L H, Yang Y H, Ragsdale C W, Gao J H 2014 Magn. Reson. Med. 72 1311Google Scholar

    [131]

    Chai Y H, Bi G Q, Wang L P, Xu F Q, Wu R Q, Zhou X, Qiu B S, Lei H, Zhang Y Y, Gao J H 2016 NeuroImage 125 533Google Scholar

    [132]

    Jiang X, Sheng J W, Li H J, Chai Y H, Zhou X, Wu B, Guo X D, Gao J H 2016 Magn. Reson. Med. 75 519Google Scholar

    [133]

    Kamei H, Iramina K, Yoshikawa K, Ueno S 1999 IEEE Trans. Magn. 35 4109Google Scholar

    [134]

    Bianciardi M, Di Russo F, Aprile T, Maraviglia B, Hagberg G E 2004 Magn. Reson. Imaging 22 1429Google Scholar

    [135]

    Konn D, Gowland P, Bowtell R 2003 Magn. Reson. Med. 50 40Google Scholar

    [136]

    Liston A D, Salek-Haddadi A, Kiebel S J, Hamandi K, Turner R, Lemieux L 2004 Magn. Reson. Imaging 22 1441Google Scholar

    [137]

    Chow L S, Cook G G, Whitby E, Paley M N J 2006 NeuroImage 30 835Google Scholar

    [138]

    Chow L S, Dagens A, Fu Y, Cook G G, Paley M N J 2008 Magn. Reson. Med. 60 1147Google Scholar

    [139]

    Xue Y Q, Chen X Y, Grabowski T, Xiong J H 2009 Magn. Reson. Med. 61 1073Google Scholar

    [140]

    Singh M 1994 IEEE Trans. Nucl. Sci. 41 349Google Scholar

    [141]

    Chu R, De Zwart J A, Van Gelderen P, Fukunaga M, Kellman P, Holroyd T, Duyn J H 2004 NeuroImage 23 1059Google Scholar

    [142]

    Parkes L M, De Lange F P, Fries P, Toni I, Norris D G 2007 Magn. Reson. Med. 57 411Google Scholar

    [143]

    Mandelkow H, Halder P, Brandeis D, Soellinger M, De Zanche N, Luechinger R, Boesiger P 2007 NeuroImage 37 149Google Scholar

    [144]

    Tang L, Avison M J, Gatenby J C, Gore J C 2008 Magn. Reson. Imaging 26 484Google Scholar

    [145]

    Luo Q F, Jiang X, Chen B, Zhu Y, Gao J H 2011 Magn. Reson. Med. 65 1680Google Scholar

    [146]

    Toi P T, Jang H J, Min K, Kim S P, Lee S K, Lee J, Kwag J, Park J Y 2022 Science 378 160Google Scholar

    [147]

    Silva A C, Koretsky A P 2002 Proc. Natl. Acad. Sci. 99 15182Google Scholar

    [148]

    Yu X, Qian C Q, Chen D Y, Dodd S J, Koretsky A P 2014 Nat. Methods 11 55Google Scholar

    [149]

    Yu X, He Y, Wang M S, Merkle H, Dodd S J, Silva A C, Koretsky A P 2016 Nat. Methods 13 337Google Scholar

    [150]

    Hodono S, Rideaux R, Van Kerkoerle T, Cloos M A 2023 Imaging Neurosci. 1 1

    [151]

    Choi S H, Im G H, Choi S, Yu X, Bandettini P A, Menon R S, Kim S G 2024 Sci. Adv. 10 eadl0999Google Scholar

    [152]

    Phi Van V D, Sen S, Jasanoff A 2024 Sci. Adv. 10 eadl2034Google Scholar

    [153]

    Wilson J M, Wu H, Kerr A B, Wandell B A, Gardner J L 2024 Imaging Neurosci. 2 1

    [154]

    Kwon D 2023 Nature 617 640Google Scholar

    [155]

    Thorp H H 2023 Science 381 1058

    [156]

    Henning A 2018 NeuroImage 168 181Google Scholar

    [157]

    Godlewska B R, Clare S, Cowen P J, Emir U E 2017 Front. Psychiatry 8 123Google Scholar

    [158]

    Öz G, Tkáč I 2011 Magn. Reson. Med. 65 901Google Scholar

    [159]

    Biria M, Banca P, Healy M P, Keser E, Sawiak S J, Rodgers C T, Rua C, De Souza A M F L P, Marzuki A A, Sule A, Ersche K D, Robbins T W 2023 Nat. Commun. 14 3324Google Scholar

    [160]

    Jia K, Wang M, Steinwurzel C, Ziminski J J, Xi Y, Emir U, Kourtzi Z 2024 Sci. Adv. 10 eado7378Google Scholar

    [161]

    Bednařík P, Tkáč I, Giove F, DiNuzzo M, Deelchand D K, Emir U E, Eberly L E, Mangia S 2015 J. Cereb. Blood Flow Metab. 35 601Google Scholar

    [162]

    Bednařík P, Tkáč I, Giove F, Eberly L E, Deelchand D K, Barreto F R, Mangia S 2018 J. Cereb. Blood Flow Metab. 38 347Google Scholar

    [163]

    Ip I B, Berrington A, Hess A T, Parker A J, Emir U E, Bridge H 2017 NeuroImage 155 113Google Scholar

    [164]

    Maudsley A A, Hilal S K, Perman W H, Simon H E 1983 J. Magn. Reson. 51 147

    [165]

    Hingerl L, Strasser B, Moser P, Hangel G, Motyka S, Heckova E, Gruber S, Trattnig S, Bogner W 2020 Invest. Radiol. 55 239Google Scholar

    [166]

    Bednarik P, Goranovic D, Svatkova A, Niess F, Hingerl L, Strasser B, Deelchand D K, Spurny-Dworak B, Krssak M, Trattnig S, Hangel G, Scherer T, Lanzenberger R, Bogner W 2023 Nat. Biomed. Eng. 7 1001Google Scholar

    [167]

    Rata M, Giles S L, DeSouza N M, Leach M O, Payne G S 2014 NMR Biomed. 27 158Google Scholar

    [168]

    Nagel A M, Amarteifio E, Lehmann-Horn F, Jurkat-Rott K, Semmler W, Schad L R, Weber M A 2011 Invest. Radiol. 46 759Google Scholar

    [169]

    Santos-Díaz A, Noseworthy M D 2020 Biomed. Signal Process. Control 60 101967Google Scholar

    [170]

    Chen W, Zhu X H, Adriany G, Uǧurbil K 1997 Magn. Reson. Med. 38 551Google Scholar

    [171]

    Bogner W, Chmelik M, Andronesi O C, Sorensen A G, Trattnig S, Gruber S 2011 Magn. Reson. Med. 66 923Google Scholar

    [172]

    Mirkes C, Shajan G, Chadzynski G, Buckenmaier K, Bender B, Scheffler K 2016 Magn. Reson. Mater. Phys. Biol. Med. 29 579Google Scholar

    [173]

    Madelin G, Regatte R R 2013 J. Magn. Reson. Imaging 38 511Google Scholar

    [174]

    Madelin G, Lee J S, Regatte R R, Jerschow A 2014 Prog. Nucl. Magn. Reson. Spectrosc. 79 14Google Scholar

    [175]

    Rooney W D, Springer Jr C S 1991 NMR Biomed. 4 209Google Scholar

    [176]

    Hoesl M A U, Schad L R, Rapacchi S 2020 Magn. Reson. Med. 84 2412Google Scholar

    [177]

    Platt T, Ladd M E, Paech D 2021 Invest. Radiol. 56 705Google Scholar

    [178]

    Ra J B, Hilal S K, Oh C H, Mun I K 1988 Magn. Reson. Med. 7 11Google Scholar

    [179]

    Kraff O, Fischer A, Nagel A M, Mönninghoff C, Ladd M E 2015 J. Magn. Reson. Imaging 41 13Google Scholar

    [180]

    Nagel A M, Laun F B, Weber M A, Matthies C, Semmler W, Schad L R 2009 Magn. Reson. Med. 62 1565Google Scholar

    [181]

    Pipe J G, Zwart N R, Aboussouan E A, Robison R K, Devaraj A, Johnson K O 2011 Magn. Reson. Med. 66 1303Google Scholar

    [182]

    Licht C, Reichert S, Guye M, Schad L R, Rapacchi S 2024 Magn. Reson. Med. 91 926Google Scholar

    [183]

    Wiggins G C, Brown R, Lakshmanan K 2016 NMR Biomed. 29 96Google Scholar

    [184]

    Bangerter N K, Kaggie J D, Taylor M D, Hadley J R 2016 NMR Biomed. 29 107Google Scholar

    [185]

    Thulborn K R 2018 NeuroImage 168 250Google Scholar

    [186]

    Nunes Neto L P, Madelin G, Sood T P, Wu C C, Kondziolka D, Placantonakis D, Golfinos J G, Chi A, Jain R 2018 Neuroradiology 60 795Google Scholar

    [187]

    Regnery S, Behl N G R, Platt T, Weinfurtner N, Windisch P, Deike-Hofmann K, Sahm F, Bendszus M, Debus J, Ladd M E, Schlemmer H P, Rieken S, Adeberg S, Paech D 2020 NeuroImage Clin. 28 102427Google Scholar

    [188]

    Haeger A, Coste A, Lerman-Rabrait C, Lagarde J, Schulz J B, Vignaud A, Sarazin M, Bottlaender M, Reetz K, Romanzetti S, Boumezbeur F 2020 Alzheimers Dement. 16 e042107Google Scholar

    [189]

    Stobbe R, Boyd A, Smyth P, Emery D, Valdés Cabrera D, Beaulieu C 2021 Front. Neurol. 12 693447Google Scholar

    [190]

    Wilferth T, Mennecke A, Gast L V, Lachner S, Müller M, Rothhammer V, Huhn K, Uder M, Doerfler A, Nagel A M, Schmidt M 2022 NMR Biomed. 35 e4806Google Scholar

    [191]

    Katscher U, Börnert P, Leussler C, Van Den Brink J S 2003 Magn. Reson. Med. 49 144Google Scholar

    [192]

    Zhu Y 2004 Magn. Reson. Med. 51 775Google Scholar

    [193]

    Grissom W, Yip C, Zhang Z, Stenger V A, Fessler J A, Noll D C 2006 Magn. Reson. Med. 56 620Google Scholar

    [194]

    Gras V, Vignaud A, Amadon A, Le Bihan D, Boulant N 2017 Magn. Reson. Med. 77 635Google Scholar

    [195]

    Fiedler T M, Ladd M E, Bitz A K 2018 NeuroImage 168 33Google Scholar

    [196]

    Jezzard P, Clare S 1999 Hum. Brain Mapp. 8 80Google Scholar

    [197]

    Setsompop K, Feinberg D A, Polimeni J R 2016 NMR Biomed. 29 1198Google Scholar

    [198]

    Stockmann J P, Wald L L 2018 NeuroImage 168 71Google Scholar

    [199]

    Bates S, Dumoulin S O, Folkers P J M, Formisano E, Goebel R, Haghnejad A, Helmich R C, Klomp D, Van Der Kolk A G, Li Y, Nederveen A, Norris D G, Petridou N, Roell S, Scheenen T W J, Schoonheim M M, Voogt I, Webb A 2023 Magn. Reson. Mater. Phys. Biol. Med. 36 211Google Scholar

    [200]

    Winter L, Niendorf T 2016 Magn. Reson. Mater. Phys. Biol. Med. 29 641Google Scholar

  • [1] 韦芊屹, 倪洁蕾, 李灵, 张聿全, 袁小聪, 闵长俊. 超高时空分辨显微成像技术研究进展.  , doi: 10.7498/aps.72.20230733
    [2] 向鹏程, 蔡聪波, 王杰超, 蔡淑惠, 陈忠. 基于深度神经网络的时空编码磁共振成像超分辨率重建方法.  , doi: 10.7498/aps.71.20211754
    [3] 刘良友, 高嵩, 李莎, 李兆同, 夏一帆. 磁共振扩散张量成像中扩散敏感梯度磁场方向分布方案的研究进展.  , doi: 10.7498/aps.69.20191346
    [4] 张夫一, 葛曼玲, 郭志彤, 谢冲, 杨泽坤, 宋子博. 静息态功能磁共振成像评估健康老年人认知行为 的多尺度熵模型研究.  , doi: 10.7498/aps.69.20200051
    [5] 张夫一, 葛曼玲, 郭志彤, 谢冲, 杨泽坤, 宋子博. 静息态功能磁共振成像评估健康老年人认知行为的多尺度熵模型研究.  , doi: 10.7498/aps.69.20200050
    [6] 杜晓纪, 王为民, 兰贤辉, 李超. 1.5 T关节磁共振成像超导磁体的设计、制作与测试.  , doi: 10.7498/aps.66.248401
    [7] 杨孝敬, 杨阳, 李淮周, 钟宁. 基于模糊近似熵的抑郁症患者静息态功能磁共振成像信号复杂度分析.  , doi: 10.7498/aps.65.218701
    [8] 胡洋, 王秋良, 李毅, 朱旭晨, 牛超群. 基于边界元方法的超导核磁共振成像设备高阶轴向匀场线圈优化算法.  , doi: 10.7498/aps.65.218301
    [9] 唐弢, 赵晨, 陈志彦, 李鹏, 丁志华. 超高分辨光学相干层析成像技术与材料检测应用.  , doi: 10.7498/aps.64.174201
    [10] 高嵩, 朱艳春, 李硕, 包尚联. 核磁共振水分子扩散张量成像中基于广义Fibonacci数列的扩散敏感梯度磁场方向分布方案.  , doi: 10.7498/aps.63.048704
    [11] 方晟, 吴文川, 应葵, 郭华. 基于非均匀螺旋线数据和布雷格曼迭代的快速磁共振成像方法.  , doi: 10.7498/aps.62.048702
    [12] 包尚联, 杜江, 高嵩. 核磁共振骨皮质成像关键技术研究进展.  , doi: 10.7498/aps.62.088701
    [13] 倪志鹏, 王秋良, 严陆光. 短腔、自屏蔽磁共振成像超导磁体系统的混合优化设计方法.  , doi: 10.7498/aps.62.020701
    [14] 刘铁兵, 姚文坡, 宁新宝, 倪黄晶, 王俊. 功能磁共振成像的基本尺度熵分析.  , doi: 10.7498/aps.62.218704
    [15] 张国庆, 杜晓纪, 赵玲, 宁飞鹏, 姚卫超, 朱自安. 基于0—1整数线性规划的自屏蔽磁共振成像超导磁体设计.  , doi: 10.7498/aps.61.228701
    [16] 王宁, 金贻荣, 邓辉, 吴玉林, 郑国林, 李绍, 田野, 任育峰, 陈莺飞, 郑东宁. 基于高温超导量子干涉仪的超低场核磁共振成像研究.  , doi: 10.7498/aps.61.213302
    [17] 汪红志, 许凌峰, 俞捷, 黄清明, 王晓琰, 陆伦, 王鹤, 黄勇, 程红岩, 张学龙, 李鲠颖. 基于核磁共振弹性成像技术的肝纤维化分级体模研究.  , doi: 10.7498/aps.59.7463
    [18] 胡昕, 张继彦, 杨国洪, 刘慎业, 丁永坤. 基于布拉格反射镜的X射线多色单能成像谱仪.  , doi: 10.7498/aps.58.6397
    [19] 朱佩平, 袁清习, 黄万霞, 王寯越, 舒 航, 吴自玉, 冼鼎昌. 衍射增强成像原理.  , doi: 10.7498/aps.55.1089
    [20] 张必达, 王卫东, 宋枭禹, 俎栋林, 吕红宇, 包尚联. 磁共振现代射频脉冲理论在非均匀场成像中的应用.  , doi: 10.7498/aps.52.1143
计量
  • 文章访问数:  469
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-13
  • 修回日期:  2025-01-24
  • 上网日期:  2025-02-17

/

返回文章
返回
Baidu
map