搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强激光驱动产生的氢原子高次谐波中的法诺共振

陈苏琪 何峰

引用本文:
Citation:

强激光驱动产生的氢原子高次谐波中的法诺共振

陈苏琪, 何峰

Fano resonance effects in high-order harmonic generation from hydrogen atoms

CHEN Suqi, HE Feng
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 利用数值模拟含时薛定谔方程的方法, 研究了氢原子在强激光场作用下产生的阈下高次谐波辐射. 在波长为608 nm激光作用下, 氢原子可以吸收5个光子, 由基态$\left|1s\right\rangle$ 共振跃迁至激发态$\left|2p\right\rangle$ 态; 氢原子也可以吸收更多光子发生电离, 某些连续态$\left|c\right\rangle$ 在激光缀饰下其能量可以和$\left|2p\right\rangle$ 态能量相当. 随后发生的$\left|2p\right\rangle$态到$\left|1s\right\rangle$ 态的复合, 或$\left|c\right\rangle$ 态到$\left|1s\right\rangle$ 态的复合, 可辐射出能量相同的光子. 这两个复合路径相互干涉, 在第五次谐波中形成典型的法诺线形. 进一步研究发现, 该法诺线形依赖于激光强度. 本研究表明, 即便是在单电子体系中, 法诺干涉也可以存在, 并可以通过控制激光参数改变法诺线形.
    We numerically solved the time-dependent Schrödinger equation (TDSE) for a hydrogen atom interacting with intense near-infrared laser fields to investigate the mechanism of below-threshold high-harmonic generation (HHG). The primary focus was on understanding the spectral features, particularly resonant structures, arising in the fifth harmonic region under specific driving conditions. Our simulations utilized a laser wavelength of 608 nm. At this wavelength, hydrogen atoms can resonantly absorb five photons, promoting electrons from the ground state $\left|1s\right\rangle$ to the excited state $\left|2p\right\rangle$. Concurrently, atoms can absorb additional photons leading to ionization. Crucially, due to the AC Stark shift induced by the intense laser field (laser dressing), certain laser-dressed continuum states $\left|c\right\rangle$ become energetically degenerate with the laser-dressed $\left|2p\right\rangle$ state. High-harmonic radiation at the fifth harmonic frequency can then be emitted via two distinct quantum paths: (1) Bound-bound recombination: Direct recombination from the laser-dressed $\left|2p\right\rangle$ state back to the ground state $\left|1s\right\rangle$. (2) Continuum-bound recombination: Recombination from the laser-dressed continuum states $\left|c\right\rangle$ (reached via ionization) back to $\left|1s\right\rangle$. Both pathways emit photons of identical energy corresponding to the fifth harmonic. Our key finding is the pronounced quantum interference between these two recombination channels. This interference manifests spectrally as a characteristic asymmetric Fano lineshape in the intensity profile of the fifth harmonic. Furthermore, we demonstrate that the shape of this Fano resonance exhibits a strong and controllable dependence on the intensity of the driving laser field. This study provides clear evidence that Fano quantum interference, typically associated with multi-electron correlations or autoionizing states in complex systems, can emerge in the fundamental single-electron hydrogen atom system under intense laser fields. The interference arises directly from the coherent superposition of the bound-bound and continuum-bound recombination pathways enabled by laser-induced degeneracy. Importantly, the spectral profile of the Fano resonance can be actively manipulated by tuning the laser intensity, highlighting a novel avenue for coherent control of harmonic emission in simple atomic systems.
  • 图 1  (a) 计算得到的高次谐波谱. 虚线标记了阈上和阈下谐波能量的分界点. (b) 为图(a)中第五次谐波的局部放大图. 激光波长为608 nm, 强度为5 × 1012 W cm–2

    Fig. 1.  (a) Calculated high-harmonic spectrum. The dashed line marks the boundary between above-threshold and below-threshold harmonic energies. (b) Partial enlarged view of the fifth harmonic in Fig. (a). The laser wavelength is 608 nm with an intensity of 5 × 1012 W cm–2.

    图 2  双纵轴图: 随时间演化的态概率. 左轴为基态$ \left |1 s \right \rangle $, 右轴为激发态$ \left | 2 p \right \rangle $与连续态$ \left | c \right \rangle $的概率分布

    Fig. 2.  Dual-axis plot: Time evolution of state probabilities. The left axis corresponds to the ground state $ \left |1 s \right \rangle $, and the right axis shows the probabilities of the excited state $ \left | 2 p \right \rangle $ and continuum state $ \left | c \right \rangle $.

    图 3  (a) 归一化的第五次谐波强度随激光强度变化的谱图, 激光强度从1012 W cm–2扫描至2 × 1013 W cm–2; (b) 对应三种典型强度(黑: 5 × 1012 W cm–2, 红: 1013 W cm–2, 蓝: 1.6 × 1013 W cm–2)下的谱线形; (c) 使用简化二能级模型所得结果, 仅包含$ \left | 1 s \right \rangle - $$ \left | 2 p \right \rangle $偶极路径

    Fig. 3.  (a) Spectral map of normalized fifth harmonic intensity versus laser intensity scanned from 1012 W cm–2 to 2 × 1013 W cm–2. (b) Spectral line shapes at three representative intensities (black: 5 × 1012 W cm–2, red: 1013 W cm–2, blue: 1.6 × 1013 W cm–2). (c) Results obtained using a simplified two-level model considering only the dipole $ \left | 1 s \right \rangle - \left | 2 p \right \rangle $ transition pathway.

    Baidu
  • [1]

    Fano U 1961 Phys. Rev. 124 1866Google Scholar

    [2]

    Kobayashi K, Aikawa H, Katsumoto S, Iye Y 2002 Phys. Rev. Lett. 88 256806Google Scholar

    [3]

    Wang Y, Liao L, Hu T, Luo S, Wu L, Wang J, Zhang Z, Xie W, Sun L, Kavokin A V, Shen X, Chen Z 2017 Phys. Rev. Lett. 118 063602Google Scholar

    [4]

    Karmakar S, Kumar D, Varshney R K, Chowdhury D R 2020 Opt. Lett. 45 3386Google Scholar

    [5]

    Ott C, Aufleger L, Ding T, Rebholz M, Magunia A, Hartmann M, Stooß V, Wachs D, Birk P, Borisova G D, Meyer K, Rupprecht P, da Costa Castanheira C, Moshammer R, Attar A R, Gaumnitz T, Loh Z H, Düsterer S, Treusch R, Ullrich J, Jiang Y, Meyer M, Lambropoulos P, Pfeifer T 2019 Phys. Rev. Lett. 123 163201Google Scholar

    [6]

    Fasshauer E, Madsen L B 2020 Phys. Rev. A 101 043414Google Scholar

    [7]

    Wickenhauser M, Burgdörfer J, Krausz F, Drescher M 2005 Phys. Rev. Lett. 94 023002Google Scholar

    [8]

    Themelis S I, Lambropoulos P, Meyer M 2004 Journal of Physics B: Atomic, Molecular and Optical Physics 37 4281Google Scholar

    [9]

    Tong X M, Lin C D 2005 Phys. Rev. A 71 033406Google Scholar

    [10]

    Zhao Z X, Lin C D 2005 Phys. Rev. A 71 060702Google Scholar

    [11]

    Wang H, Chini M, Chen S, Zhang C H, He F, Cheng Y, Wu Y, Thumm U, Chang Z 2010 Phys. Rev. Lett. 105 143002Google Scholar

    [12]

    Kaldun A, Ott C, Blättermann A, Laux M, Meyer K, Ding T, Fischer A, Pfeifer T 2014 Phys. Rev. Lett. 112 103001Google Scholar

    [13]

    Kaldun A, Blättermann A, Stooß V, Donsa S, Wei H, Pazourek R, Nagele S, Ott C, Lin C D, Burgdörfer J, Pfeifer T 2016 Science 354 738Google Scholar

    [14]

    Peng P, Marceau C, Hervé M, Corkum P B, Naumov A Y, Villeneuve D M 2019 Nature Communications 10 5269Google Scholar

    [15]

    Veit S, Paul B, Alexander B, Maximilian H, D B G, Christian O, Thomas P 2020 Phys. Rev. Res. 2 032041Google Scholar

    [16]

    Harkema N, Cariker C, Lindroth E, Argenti L, Sandhu A 2021 Phys. Rev. Lett. 127 023202Google Scholar

    [17]

    Peng P, Yonghao M, Marianna L, Mathew B, Xiaoyan D, Yu N A, B C P, M V D 2022 Nature Photonics 16 4551

    [18]

    Serov V V, Kheifets A S 2024 Phys. Rev. A 110 043107Google Scholar

    [19]

    Han M, Liang H, Ji J B, Sum L C, Ueda K, Rost J M, Wörner H J 2025 Ultrafast Science 5 0091Google Scholar

    [20]

    Lewenstein M, Balcou P, Ivanov M Y, L'Huillier A, Corkum P B 1994 Phys. Rev. A 49 2117Google Scholar

    [21]

    Soifer H, Botheron P, Shafir D, Diner A, Raz O, Bruner B D, Mairesse Y, Pons B, Dudovich N 2010 Phys. Rev. Lett. 105 143904Google Scholar

    [22]

    C Y D, R S T, Jun Y, L T J, James H, B G M, J S K 2009 Nature Physics 5 815820

    [23]

    Hostetter J A, Tate J L, Schafer K J, Gaarde M B 2010 Phys. Rev. A 82 023401Google Scholar

    [24]

    Xiong W H, Geng J W, Tang J Y, Peng L Y, Gong Q 2014 Phys. Rev. Lett. 112 233001Google Scholar

    [25]

    Xiong W H, Jin J Z, Peng L Y, Gong Q 2017 Phys. Rev. A 96 023418Google Scholar

    [26]

    Camp S, Schafer K J, Gaarde M B 2015 Phys. Rev. A 92 013404Google Scholar

    [27]

    Peng-Cheng L, Yae-Lin S, Cecil L, Shih-I C 2015 Nature Communications 6 7178Google Scholar

    [28]

    Chu W C, Travers J C, Russell P S J 2016 New Journal of Physics 18 023018Google Scholar

    [29]

    Beaulieu S, Camp S, Descamps D, Comby A, Wanie V, Petit S, Légaré F, Schafer K J, Gaarde M B, Catoire F, Mairesse Y 2016 Phys. Rev. Lett. 117 203001Google Scholar

    [30]

    Du L L, Wang G L, Li P C, Zhou X X, Zhao Z X 2018 Phys. Rev. A 97 023404Google Scholar

    [31]

    Guo Q L, Li P C, Zhou X X, Chu S I 2018 Optics Communications 410 262Google Scholar

    [32]

    Wang B, Zhang Y, Lan P, Zhai C, Li M, Zhu X, Chen J, Lu P, Lin C D 2021 Phys. Rev. A 103 053119Google Scholar

    [33]

    Jun P T, C L J 1986 The Journal of Chemical Physics 85 5870Google Scholar

    [34]

    Burnett K, Reed V C, Cooper J, Knight P L 1992 Phys. Rev. A 45 3347Google Scholar

    [35]

    Sundaram B, Milonni P W 1990 Phys. Rev. A 41 6571Google Scholar

    [36]

    Figueira de Morisson Faria C, Dörr M, Sandner W 1998 Phys. Rev. A 58 2990Google Scholar

    [37]

    Figueira de Morisson Faria C, Rotter I 2002 Phys. Rev. A 66 013402Google Scholar

    [38]

    Bickel W S, Goodman A S 1966 Phys. Rev. 148 1Google Scholar

    [39]

    Bo L, Rujiang L, Jiahui F, Qun W, Kuang Z, Wan C, Zhefei W, Ruyu M 2016 Scientific Reports 6 31884Google Scholar

    [40]

    Iizawa M, Kosugi S, Koike F, Azuma Y 2021 Physica Scripta 96 055401Google Scholar

  • [1] 汉琳, 苗淑莉, 李鹏程. 优化组合激光场驱动原子产生高次谐波及单个超短阿秒脉冲理论研究.  , doi: 10.7498/aps.71.20221298
    [2] 江淼, 郑晓冉, 林南省, 李英骏. 正负电子对产生过程中不同外场宽度下的多光子跃迁效应.  , doi: 10.7498/aps.70.20202101
    [3] 郭春祥, 焦志宏, 周效信, 李鹏程. 激光强度依赖的阈下谐波产生机制.  , doi: 10.7498/aps.69.20191883
    [4] 黄诚, 钟明敏, 吴正茂. 强场非次序双电离中再碰撞动力学的强度依赖.  , doi: 10.7498/aps.68.20181811
    [5] 金发成, 王兵兵. 频域图像下的强场非序列电离过程.  , doi: 10.7498/aps.65.224205
    [6] 肖相如, 王慕雪, 黎敏, 耿基伟, 刘运全, 彭良友. 强激光场中原子单电离的半经典方法.  , doi: 10.7498/aps.65.220203
    [7] 赵磊, 张琦, 董敬伟, 吕航, 徐海峰. 不同原子在飞秒强激光场中的里德堡态激发和双电离.  , doi: 10.7498/aps.65.223201
    [8] 王品懿, 贾欣燕, 樊代和, 陈京. 不同波长下氩原子高阶阈上电离的类共振增强结构.  , doi: 10.7498/aps.64.143201
    [9] 李文亮, 张季, 姚洪斌. 三种不同表象下多组态含时Hartree Fock理论实现方案.  , doi: 10.7498/aps.62.123202
    [10] 罗松, 付统, 张中月. 内嵌银纳米棒圆形银缝隙结构中的法诺共振现象.  , doi: 10.7498/aps.62.147303
    [11] 叶小亮, 周效信, 赵松峰, 李鹏程. 原子在两色组合激光场中产生的单个阿秒脉冲.  , doi: 10.7498/aps.58.1579
    [12] 李会山, 李鹏程, 周效信. 强激光场中模型氢原子的势函数对产生高次谐波强度的影响.  , doi: 10.7498/aps.58.7633
    [13] 郭中华, 周效信. 基态分子波函数对N2分子在强激光场中产生高次谐波的影响.  , doi: 10.7498/aps.57.1616
    [14] 康 帅, 刘 强, 钟振祥, 张现周, 史庭云. 氢原子Rydberg态抗磁谱的高阶B-spline基组计算.  , doi: 10.7498/aps.55.3380
    [15] 赵松峰, 周效信, 金 成. 强激光场中模型氢原子和真实氢原子的高次谐波与电离特性研究.  , doi: 10.7498/aps.55.4078
    [16] 李兴华, 杨亚天. 氢原子波函数的玻色算子表示.  , doi: 10.7498/aps.54.12
    [17] 李鹏程, 周效信, 董晨钟, 赵松峰. 强激光场中长程势与短程势原子产生高次谐波与电离特性研究.  , doi: 10.7498/aps.53.750
    [18] 邵磊, 霍裕昆, 王平晓, 孔青, 袁祥群, 冯量. 场极化方向对强激光加速电子效应的影响.  , doi: 10.7498/aps.50.1284
    [19] 周效信, 李白文. 强激光场中原子的束缚态和连续态对高次谐波的影响.  , doi: 10.7498/aps.50.1902
    [20] 郑丽萍, 邱锡钧. 光强、频率对强激光场中的多原子分子离子增强电离行为的影响.  , doi: 10.7498/aps.49.1965
计量
  • 文章访问数:  223
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 上网日期:  2025-06-04

/

返回文章
返回
Baidu
map