搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于薄膜铌酸锂的模式色散相位匹配单光子源

余桂芳 李志浩 肖天琦 冯田峰 周晓祺

引用本文:
Citation:

基于薄膜铌酸锂的模式色散相位匹配单光子源

余桂芳, 李志浩, 肖天琦, 冯田峰, 周晓祺

Mode-dispersion phase matching single photon source based on thin-film lithium niobate

Yu Gui-Fang, Li Zhi-Hao, Xiao Tian-Qi, Feng Tian-Feng, Zhou Xiao-Qi
PDF
HTML
导出引用
  • 薄膜铌酸锂光学芯片因低损耗、高非线性系数及高电光调制带宽等特性, 有望成为开展集成光学量子信息研究的理想实验平台. 然而, 到目前为止, 基于薄膜铌酸锂的单光子源普遍采用周期性极化准相位匹配技术, 该技术要求精确地制备电极并对铌酸锂波导进行周期性极化, 工艺复杂且对加工精度要求较高. 本文提出了一种基于模式色散相位匹配的薄膜铌酸锂单光子源器件. 该器件无需制作电极, 具备加工简便和集成度更高的优势, 同时单光子产率可达3.8×10⁷/(s·mW), 能够满足光学量子信息处理的需求. 此器件有望替代传统准相位匹配单光子源, 进一步推动基于薄膜铌酸锂芯片的光学量子信息研究的发展.
    In the domain of integrated quantum photonics, the burgeoning superiority of lithium niobate’s second-order nonlinearity in electro-optic modulation makes thin-film lithium niobate a leading quantum photonic platform after silicon. To date, single-photon sources using thin-film lithium niobate has mainly adopted periodic polarization quasi-phase matching technology, which requires the preparation of complex electrodes for domain inversion in the waveguide to realize quasi-phase matching. This method inevitably introduces complexity, such as complex processing methods, enlarged polarization regions, and compromised integration density. With the development of quantum information technology, the ever-increasing degree of integration constantly creates new demands. Consequently, the development of a streamlined, high-efficiency quantum light source on a lithium niobate platform is a pressing issue. In this study, we propose a novel thin-film lithium niobate parametric down-conversion single-photon source based on mode dispersion phase matching theory. The strategy is different from conventional strategies that utilize periodic polarization to generate single-photon sources in thin-film lithium niobate devices. In contrast to traditional quasi-phase matching techniques that utilize the phase matching between pump fundamental mode light and parametric fundamental mode light, our method employs the phase matching between the pump light’s higher-order mode and the parametric light’s fundamental mode. The pump light’s higher-order mode is obtained by designing an asymmetric directional coupler. The device’s single-photon yield can attain $3.8\times10^{7}$/(s·mW), satisfying the requirements for optical quantum information processing. This innovative solution is expected to replace the traditional quasi-phase-matching single-photon sources, thus further promoting the study of optical quantum information based on thin-film lithium niobate chips.
      通信作者: 周晓祺, zhouxq8@mail.sysu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61974168)和广东省重大科技专项计划(批准号: 2018B030329001, 2018B030325001)资助的课题
      Corresponding author: Zhou Xiao-Qi, zhouxq8@mail.sysu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61974168) and the Key Research and Development Program of Guangdong Province, China (Grant Nos. 2018B030329001, 2018B030325001)
    [1]

    Dowling J P, Milburn G J 2003 Philos. Trans. A. Math. Phys. Eng. Sci. 361 1655Google Scholar

    [2]

    Flamini F, Spagnolo N, Sciarrino F 2019 Rep. Prog. Phys. 82 016001Google Scholar

    [3]

    Tang Y L, Yin H L, Chen S J, Liu Y, Zhang W J, Jiang X, Zhang L, Wang J, You L X, Guan J Y 2014 Phys. Rev. Lett. 113 190501Google Scholar

    [4]

    Ren J G, Xu P, Yong H L, Zhang L, Liao S K, Yin J, Liu W Y, Cai W Q, Yang M, Li L 2017 Nature 549 70Google Scholar

    [5]

    Chi Y, Huang J, Zhang Z, Mao J, Zhou Z, Chen X, Zhai C, Bao J, Dai T, Yuan H 2022 Nat. Commun. 13 1166Google Scholar

    [6]

    Lloyd S 1996 Science 273 1073Google Scholar

    [7]

    Zhong H S, Deng Y H, Qin J, Wang H, Chen M C, Peng L C, Luo Y H, Wu D, Gong S Q, Su H 2021 Phys. Rev. Lett. 127 180502Google Scholar

    [8]

    Wang J, Sciarrino F, Laing A, Thompson M G 2020 Nat. Photonics 14 273Google Scholar

    [9]

    Wang J, Paesani S, Ding Y, Santagati R, Skrzypczyk P, Salavrakos A, Tura J, Augusiak R, Mančinska L, Bacco D 2018 Science 360 285Google Scholar

    [10]

    Qiang X G, Zhou X Q, Wang J W, Wilkes C M, Loke T, O'Gara S, Kling L, Marshall G D, Santagati R, Ralph T C 2018 Nat. Photonics 12 534Google Scholar

    [11]

    Politi A, Matthews J C, O'brien J L 2009 Science 325 1221Google Scholar

    [12]

    Peruzzo A, Lobino M, Matthews J C, Matsuda N, Politi A, Poulios K, Zhou X Q, Lahini Y, Ismail N, Wörhoff K 2010 Science 329 1500Google Scholar

    [13]

    Laing A, Peruzzo A, Politi A, Verde M R, Halder M, Ralph T C, Thompson M G, O'Brien J L 2010 Appl. Phys. Lett. 97 211109Google Scholar

    [14]

    Shadbolt P J, Verde M R, Peruzzo A, Politi A, Laing A, Lobino M, Matthews J C, Thompson M G, O'Brien J L 2012 Nat. Photonics 6 45Google Scholar

    [15]

    Gerrits T, Thomas Peter N, Gates J C, Lita A E, Metcalf B J, Calkins B, Tomlin N A, Fox A E, Linares A L, Spring J B 2011 Phys. Rev. A 84 060301Google Scholar

    [16]

    Carolan J, Harrold C, Sparrow C, Martín-López E, Russell N J, Silverstone J W, Shadbolt P J, Matsuda N, Oguma M, Itoh M 2015 Science 349 711Google Scholar

    [17]

    Kuyken B, Leo F, Clemmen S, Dave U, Van Laer R, Ideguchi T, Zhao H, Liu X, Safioui J, Coen S 2017 Nanophotonics 6 377Google Scholar

    [18]

    Alibart O, D'Auria V, De Micheli M, Doutre F, Kaiser F, LabontéL, Lunghi T, Picholle É, Tanzilli S 2016 J. Opt. 18 104001Google Scholar

    [19]

    Zhang M, Wang C, Cheng R, Shams-Ansari A, Lončar M 2017 Optica 4 1536Google Scholar

    [20]

    Jin H, Liu F, Xu P, Xia J, Zhong M, Yuan Y, Zhou J, Gong Y, Wang W, Zhu S 2014 Phys. Rev. Lett. 113 103601Google Scholar

    [21]

    Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A, Chandrasekhar S, Winzer P, Lončar M 2018 Nature 562 101Google Scholar

    [22]

    Elkus B S, Abdelsalam K, Rao A, Velev V, Fathpour S, Kumar P, Kanter G S 2019 Opt. Express 27 38521Google Scholar

    [23]

    Javid U A, Ling J, Staffa J, Li M, He Y, Lin Q 2021 Phys. Rev. Lett. 127 183601Google Scholar

    [24]

    Zhao J, Ma C, Rüsing M, Mookherjea S 2020 Phys. Rev. Lett. 124 163603Google Scholar

    [25]

    张晨涛, 石小涛, 朱文新, 朱金龙, 郝向英, 金锐博 2022 71 204201Google Scholar

    Zhang C T, Shi X T, Zhu W X, Zhu J L, Hao X Y, Jin R B 2022 Acta Phys. Sin. 71 204201Google Scholar

    [26]

    Zelmon D E, Small D L, Jundt D 1997 J. Opt. Soc. Am. B 14 3319Google Scholar

    [27]

    Donnelly J P, Haus H A, Molter L A 1988 J. Lightwave. Technol. 6 257Google Scholar

    [28]

    Chrostowski L, Hochberg M 2015 Silicon Photonics Design: from Devices to Systems (Cambridge: Cambridge University Press) pp92–95

    [29]

    Suhara T, Fujimura M 2003 Waveguide Nonlinear-optic Devices (Vol. 11) (New York: Springer Science & Business Media) pp41, 42

    [30]

    Suhara T 2009 Laser. Photonics Rev. 3 370Google Scholar

    [31]

    Suhara T, Kintaka H 2005 IEEE J. Quantum. Electron. 41 1203Google Scholar

  • 图 1  波导结构截面图及单光子源器件结构示意图. 1)为Y分束器; 2)为非对称定向耦合器; 3)为模式色散相位匹配光子对源; 4)为上臂带有一个电热移相器的2 × 2定向耦合器. 建模采用的铌酸锂波导结构是侧壁倾角θ = 60°, h = 0.36 μm的条形波导, 材料模型为一致生长的铌酸锂[26]

    Fig. 1.  Cross-sectional diagram of the waveguide structure and schematic illustration of the single-photon source device. 1) Y-splitter. 2) Asymmetric directional coupler. 3) Mode dispersion phase-matched photon pair source. 4) 2 × 2 directional coupler in the upper arm with an electrothermal phase shifter. The modeled lithium niobate waveguide structure has a sidewall angle θ = 60° and a height h = 0.36 μm, with the material model being uniformly grown lithium niobate[26]

    图 2  (a) 775 nm泵浦光在$ {\rm{TE}}_0 $, $ {\rm{TE}}_1 $, $ {\rm{TE}}_2 $模式下有效折射率随波导宽度的变化; (b)非对称定向耦合器的自由光谱范围以及模拟光场分布图

    Fig. 2.  (a) Effective refractive index variation curves for 775 nm pump light in $ {\rm{TE}}_0 $, $ {\rm{TE}}_1 $ and $ {\rm{TE}}_2 $ modes as a function of waveguide width; (b) free spectral range and simulated optical field distribution diagram of asymmetric directional coupler

    图 3  (a) 775 nm的$ {\rm{TE}}_0 $, $ {\rm{TE}}_1 $, $ {\rm{TE}}_2 $模式光和1550 nm的$ {\rm{TE}}_0 $模式光的有效折射率随波导宽度的变化; (b)输出参量光光谱图

    Fig. 3.  (a) Variation curves of effective refractive index for 775 nm $ {\rm{TE}}_0 $, $ {\rm{TE}}_1 $, $ {\rm{TE}}_2 $ mode light and 1550 nm $ {\rm{TE}}_0 $ mode light as a function of waveguide width; (b) output parametric light spectrum diagram

    图 4  (a)相位匹配波长随波导宽度的变化; (b)相位匹配波长随波导侧边倾角θ的变化; (c)相位匹配波长随温度的变化

    Fig. 4.  (a) Variation of phase-matching wavelength with waveguide width; (b) variation of phase-matching wavelength with waveguide sidewall angle θ; (c) variation of phase-matching wavelength with temperature

    图 5  波导侧边倾角为60°的条形波导在高度为300—600 nm范围内、不同波导宽度情况下, 775 nm ${\rm{TE}}_2$泵浦光与1550 nm ${\rm{TE}}_0$参量光的有效折射率扫描数据

    Fig. 5.  Effective refractive index scan data for 775 nm ${\rm{TE}}_2$ pump light and 1550 nm ${\rm{TE}}_0$ parametric light in the case of different waveguide widths for strip waveguides with a sidewall angle of 60° and heights ranging from 300 nm to 600 nm

    Baidu
  • [1]

    Dowling J P, Milburn G J 2003 Philos. Trans. A. Math. Phys. Eng. Sci. 361 1655Google Scholar

    [2]

    Flamini F, Spagnolo N, Sciarrino F 2019 Rep. Prog. Phys. 82 016001Google Scholar

    [3]

    Tang Y L, Yin H L, Chen S J, Liu Y, Zhang W J, Jiang X, Zhang L, Wang J, You L X, Guan J Y 2014 Phys. Rev. Lett. 113 190501Google Scholar

    [4]

    Ren J G, Xu P, Yong H L, Zhang L, Liao S K, Yin J, Liu W Y, Cai W Q, Yang M, Li L 2017 Nature 549 70Google Scholar

    [5]

    Chi Y, Huang J, Zhang Z, Mao J, Zhou Z, Chen X, Zhai C, Bao J, Dai T, Yuan H 2022 Nat. Commun. 13 1166Google Scholar

    [6]

    Lloyd S 1996 Science 273 1073Google Scholar

    [7]

    Zhong H S, Deng Y H, Qin J, Wang H, Chen M C, Peng L C, Luo Y H, Wu D, Gong S Q, Su H 2021 Phys. Rev. Lett. 127 180502Google Scholar

    [8]

    Wang J, Sciarrino F, Laing A, Thompson M G 2020 Nat. Photonics 14 273Google Scholar

    [9]

    Wang J, Paesani S, Ding Y, Santagati R, Skrzypczyk P, Salavrakos A, Tura J, Augusiak R, Mančinska L, Bacco D 2018 Science 360 285Google Scholar

    [10]

    Qiang X G, Zhou X Q, Wang J W, Wilkes C M, Loke T, O'Gara S, Kling L, Marshall G D, Santagati R, Ralph T C 2018 Nat. Photonics 12 534Google Scholar

    [11]

    Politi A, Matthews J C, O'brien J L 2009 Science 325 1221Google Scholar

    [12]

    Peruzzo A, Lobino M, Matthews J C, Matsuda N, Politi A, Poulios K, Zhou X Q, Lahini Y, Ismail N, Wörhoff K 2010 Science 329 1500Google Scholar

    [13]

    Laing A, Peruzzo A, Politi A, Verde M R, Halder M, Ralph T C, Thompson M G, O'Brien J L 2010 Appl. Phys. Lett. 97 211109Google Scholar

    [14]

    Shadbolt P J, Verde M R, Peruzzo A, Politi A, Laing A, Lobino M, Matthews J C, Thompson M G, O'Brien J L 2012 Nat. Photonics 6 45Google Scholar

    [15]

    Gerrits T, Thomas Peter N, Gates J C, Lita A E, Metcalf B J, Calkins B, Tomlin N A, Fox A E, Linares A L, Spring J B 2011 Phys. Rev. A 84 060301Google Scholar

    [16]

    Carolan J, Harrold C, Sparrow C, Martín-López E, Russell N J, Silverstone J W, Shadbolt P J, Matsuda N, Oguma M, Itoh M 2015 Science 349 711Google Scholar

    [17]

    Kuyken B, Leo F, Clemmen S, Dave U, Van Laer R, Ideguchi T, Zhao H, Liu X, Safioui J, Coen S 2017 Nanophotonics 6 377Google Scholar

    [18]

    Alibart O, D'Auria V, De Micheli M, Doutre F, Kaiser F, LabontéL, Lunghi T, Picholle É, Tanzilli S 2016 J. Opt. 18 104001Google Scholar

    [19]

    Zhang M, Wang C, Cheng R, Shams-Ansari A, Lončar M 2017 Optica 4 1536Google Scholar

    [20]

    Jin H, Liu F, Xu P, Xia J, Zhong M, Yuan Y, Zhou J, Gong Y, Wang W, Zhu S 2014 Phys. Rev. Lett. 113 103601Google Scholar

    [21]

    Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A, Chandrasekhar S, Winzer P, Lončar M 2018 Nature 562 101Google Scholar

    [22]

    Elkus B S, Abdelsalam K, Rao A, Velev V, Fathpour S, Kumar P, Kanter G S 2019 Opt. Express 27 38521Google Scholar

    [23]

    Javid U A, Ling J, Staffa J, Li M, He Y, Lin Q 2021 Phys. Rev. Lett. 127 183601Google Scholar

    [24]

    Zhao J, Ma C, Rüsing M, Mookherjea S 2020 Phys. Rev. Lett. 124 163603Google Scholar

    [25]

    张晨涛, 石小涛, 朱文新, 朱金龙, 郝向英, 金锐博 2022 71 204201Google Scholar

    Zhang C T, Shi X T, Zhu W X, Zhu J L, Hao X Y, Jin R B 2022 Acta Phys. Sin. 71 204201Google Scholar

    [26]

    Zelmon D E, Small D L, Jundt D 1997 J. Opt. Soc. Am. B 14 3319Google Scholar

    [27]

    Donnelly J P, Haus H A, Molter L A 1988 J. Lightwave. Technol. 6 257Google Scholar

    [28]

    Chrostowski L, Hochberg M 2015 Silicon Photonics Design: from Devices to Systems (Cambridge: Cambridge University Press) pp92–95

    [29]

    Suhara T, Fujimura M 2003 Waveguide Nonlinear-optic Devices (Vol. 11) (New York: Springer Science & Business Media) pp41, 42

    [30]

    Suhara T 2009 Laser. Photonics Rev. 3 370Google Scholar

    [31]

    Suhara T, Kintaka H 2005 IEEE J. Quantum. Electron. 41 1203Google Scholar

  • [1] 熊霄, 曹启韬, 肖云峰. 铌酸锂集成光子器件的发展与机遇.  , 2023, 72(23): 234201. doi: 10.7498/aps.72.20231295
    [2] 刘瑶, 何军, 苏楠, 蔡婷, 刘智慧, 刁文婷, 王军民. 用于铯原子里德伯态激发的509 nm波长脉冲激光系统.  , 2023, 72(6): 060303. doi: 10.7498/aps.72.20222286
    [3] 张晨涛, 石小涛, 朱文新, 朱金龙, 郝向英, 金锐博. 利用域排列算法设计铌酸锂晶体实现3 μm中红外波段频域纯态单光子源.  , 2022, 71(20): 204201. doi: 10.7498/aps.71.20220739
    [4] 姚杰, 赵爱迪. 表面单分子量子态的探测和调控研究进展.  , 2022, 71(6): 060701. doi: 10.7498/aps.71.20212324
    [5] 尚向军, 李叔伦, 马奔, 陈瑶, 何小武, 倪海桥, 牛智川. 量子点单光子源的光纤耦合.  , 2021, 70(8): 087801. doi: 10.7498/aps.70.20201605
    [6] 李庚霖, 贾曰辰, 陈峰. 绝缘体上铌酸锂薄膜片上光子学器件的研究进展.  , 2020, 69(15): 157801. doi: 10.7498/aps.69.20200302
    [7] 张越, 侯飞雁, 刘涛, 张晓斐, 张首刚, 董瑞芳. 基于II类周期极化铌酸锂波导的通信波段小型化频率纠缠源产生及其量子特性测量.  , 2018, 67(14): 144204. doi: 10.7498/aps.67.20180329
    [8] 辛成舟, 马健男, 马静, 南策文. 伸缩-剪切模式自偏置铌酸锂基复合材料的磁电性能和高频谐振响应.  , 2018, 67(15): 157502. doi: 10.7498/aps.67.20180810
    [9] 张尧, 张杨, 董振超. 单分子尺度的光量子态调控与单分子电致发光研究.  , 2018, 67(22): 223301. doi: 10.7498/aps.67.20181718
    [10] 辛成舟, 马健男, 马静, 南策文. 厚度剪切模式铌酸锂基复合材料的磁电性能优化.  , 2017, 66(6): 067502. doi: 10.7498/aps.66.067502
    [11] 钟东洲, 佘卫龙. 铌酸锂晶体中飞秒激光脉冲线性电光效应及其色散补偿.  , 2012, 61(6): 064214. doi: 10.7498/aps.61.064214
    [12] 韩清瑶, 汤俊超, 张弨, 王川, 马海强, 于丽, 焦荣珍. 局域态密度对表面等离激元特性影响的研究.  , 2012, 61(13): 135202. doi: 10.7498/aps.61.135202
    [13] 杨磊, 马晓欣, 崔亮, 郭学石, 李小英. 基于色散位移光纤的高宣布式窄带单光子源.  , 2011, 60(11): 114206. doi: 10.7498/aps.60.114206
    [14] 马海强, 李林霞, 王素梅, 吴张斌, 焦荣珍. 一种全光纤型观测光波粒二象性的方法.  , 2010, 59(1): 75-79. doi: 10.7498/aps.59.75
    [15] 师丽红, 阎文博. 纯铌酸锂晶体红外光谱的低温研究.  , 2009, 58(7): 4987-4991. doi: 10.7498/aps.58.4987
    [16] 马海强, 王素梅, 吴令安. 基于偏振纠缠光子对的单光子源.  , 2009, 58(2): 717-721. doi: 10.7498/aps.58.717
    [17] 齐继伟, 李玉栋, 许京军, 崔国新, 孔凡磊, 孙 骞. 铌酸锂晶体中的磁光折变效应研究.  , 2007, 56(12): 7015-7022. doi: 10.7498/aps.56.7015
    [18] 薛挺, 于建, 杨天新, 倪文俊, 李世忱. 准位相匹配铌酸锂波导倍频特性分析与优化设计.  , 2002, 51(3): 565-572. doi: 10.7498/aps.51.565
    [19] 刘劲松, 梁昌洪, 安毓英, 李铭华, 金婵, 徐玉恒, 吴仲康. 掺杂铌酸锂双相位共轭镜光学谐振腔的最佳抽运比.  , 1995, 44(8): 1217-1221. doi: 10.7498/aps.44.1217
    [20] 晶体学室铌酸盐晶体研究组. 铌酸锶钠锂单晶的生长.  , 1979, 28(2): 229-233. doi: 10.7498/aps.28.229
计量
  • 文章访问数:  4688
  • PDF下载量:  219
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-06
  • 修回日期:  2023-05-27
  • 上网日期:  2023-06-02
  • 刊出日期:  2023-08-05

/

返回文章
返回
Baidu
map