-
本文深入研究了130 nm Silicon-on-Insulator (SOI) 技术下的窄沟道n型metal-oxide-semiconductor-field-effect-transistor (MOSFET) 器件的总剂量辐照效应. 在总剂量辐照下, 相比于宽沟道器件, 窄沟道器件的阈值电压漂移更为明显. 论文利用电荷守恒定律很好地解释了辐照增强的窄沟道效应. 另外, 本文首次发现, 对于工作在线性区的窄沟道器件, 辐照产生的浅沟槽隔离氧化物(STI) 陷阱正电荷会增加沟道区载流子之间的碰撞概率和沟道表面粗糙度散射, 从而导致主沟道晶体管的载流子迁移率退化以及跨导降低. 最后, 对辐照增强的窄沟效应以及迁移率退化进行了三维器件仿真模拟, 仿真结果与实验结果符合得很好.
-
关键词:
- 总剂量效应(TID) /
- 浅沟槽隔离(STI) /
- 氧化层陷阱正电荷 /
- SOI MOSFET
The effects of total ionizing dose on narrow-channel N-type metal-oxide-semiconductor field-effect-transistors (NMOSFETs) in a 130 nm partially depleted silicon-on-insulator (SOI) technology are presented. The charge conservation principle is utilized to analyze the radiation-induced narrow-channel effect (RINCE). In addition, it is found for the first time, as for as we know that for the narrow-channel NMOSFETs operated in the linear region, the radiation-induced positive charges trapped in the shallow trench isolation can increase the probability of electron-electron collisions and surface roughness scattering, resulting in the degradation of the carrier mobility and transconductance of the main transistor. Finally, the RINCE as well as the degradation of the carrier mobility has been verified by our three-dimensional device simulation; and good agreement between the simulation and experimental results is obtained.-
Keywords:
- total ionizing dose /
- shallow trench isolation /
- oxide trapped charge /
- narrow-channel NMOSFETs
[1] Huang R, Zhang G Y, Li Y X, Zhang X 2005 SOI CMOS Technologies and applications (Beijing: Publishing House of Science) p3 (in Chinese) [黄如, 张国艳, 李映雪, 张兴 2005 SOI CMOS技术及其应用 (科学出版社) 第3页]
[2] Zhou X J, Li L L, Zhou Y, Luo J, Yu Z G 2012 Acta Phys. Sin. 61 206102 (in Chinese) [周昕杰, 李蕾蕾, 周毅, 罗静, 于宗光 2012 61 206102]
[3] Liu S T, Anthony D, Heikkila W, Hughes H 2004 IEEE Trans. Nucl. Sci. 51 3475
[4] Galloway K F, Wilson C L, Witte L C 1985 IEEE Trans. Nucl. Sci. 32 4461
[5] Hu Z Y, Liu Z L, Shao H, Zhang Z X, Ning B X, Chen M, Bi D W, Zou S C 2011 Chin. Phys. B 20 120702
[6] Liu Z L, Hu Z Y, Zhang Z X, Shao H, Ning B X, Bi D W, Chen M 2011 Acta Phys. Sin. 60 116103 (in Chinese) [刘张李, 胡志远, 张正选, 邵华, 宁冰旭, 毕大炜, 陈明 2011 60 116103]
[7] Hu Z Y, Liu Z L, Shao H, Zhang Z X, Ning B X, Bi D W, Chen M 2012 Acta Phys. Sin. 61 050702 (in Chinese) [胡志远, 刘张李, 邵华, 张正选, 宁冰旭, 毕大炜, 陈明 2012 61 116103]
[8] Barnaby H J, Mclain M L, Esqueda I S 2008 Proceedings of the 2008 IEEE Custom Integrated Circuits Conference San Jose, USA, September 21-24, 2008 p273
[9] Wu W M, Yao W, Gildenblat G 2008 IEEE Trans. Elec. Dev. 55 3295
[10] Schwank J R, Shaneyfelt M R, Dodd P E 2000 IEEE Trans. Nucl. Sci. 47 2175
[11] Ferlet-Cavrois V, Colladant T, Paillet P 2000 IEEE Trans. Nucl. Sci. 45 1817
[12] Mrstik B J, Hughes H L, McMarr P J 2000 IEEE Trans. Nucl. Sci. 47 2189
[13] Cavrois V F, Colladant T, Paillet P, Leray J L, Musseau O, Schwank J R, Shaneyfelt M R 2000 IEEE Trans. Nucl. Sci. 47 2183
[14] Zhuo Q Q, Liu H X, Yang Z N, Cai H M, Hao Y 2012 Acta Phys. Sin. 61 220702 (in Chinese) [卓青青, 刘红侠, 杨兆年, 蔡惠民, 郝跃 2012 61 220702]
[15] Faccio F, Cervelli G 2005 IEEE Trans. Nucl. Sci. 52 2413
[16] Saks N S, Ancona M G, Rendell R W 2002 Appl. Phys. Lett. 80 3219
[17] Galloway K F, Gaitan M, Russell T J 1984 IEEE Trans. Nucl. Sci. 31 1497
[18] Rowlands D D, Dimitrijev S 1991 Microelectron Conf. 1911 p130
[19] ATLAS version 5.6.0.R, SILVACO
-
[1] Huang R, Zhang G Y, Li Y X, Zhang X 2005 SOI CMOS Technologies and applications (Beijing: Publishing House of Science) p3 (in Chinese) [黄如, 张国艳, 李映雪, 张兴 2005 SOI CMOS技术及其应用 (科学出版社) 第3页]
[2] Zhou X J, Li L L, Zhou Y, Luo J, Yu Z G 2012 Acta Phys. Sin. 61 206102 (in Chinese) [周昕杰, 李蕾蕾, 周毅, 罗静, 于宗光 2012 61 206102]
[3] Liu S T, Anthony D, Heikkila W, Hughes H 2004 IEEE Trans. Nucl. Sci. 51 3475
[4] Galloway K F, Wilson C L, Witte L C 1985 IEEE Trans. Nucl. Sci. 32 4461
[5] Hu Z Y, Liu Z L, Shao H, Zhang Z X, Ning B X, Chen M, Bi D W, Zou S C 2011 Chin. Phys. B 20 120702
[6] Liu Z L, Hu Z Y, Zhang Z X, Shao H, Ning B X, Bi D W, Chen M 2011 Acta Phys. Sin. 60 116103 (in Chinese) [刘张李, 胡志远, 张正选, 邵华, 宁冰旭, 毕大炜, 陈明 2011 60 116103]
[7] Hu Z Y, Liu Z L, Shao H, Zhang Z X, Ning B X, Bi D W, Chen M 2012 Acta Phys. Sin. 61 050702 (in Chinese) [胡志远, 刘张李, 邵华, 张正选, 宁冰旭, 毕大炜, 陈明 2012 61 116103]
[8] Barnaby H J, Mclain M L, Esqueda I S 2008 Proceedings of the 2008 IEEE Custom Integrated Circuits Conference San Jose, USA, September 21-24, 2008 p273
[9] Wu W M, Yao W, Gildenblat G 2008 IEEE Trans. Elec. Dev. 55 3295
[10] Schwank J R, Shaneyfelt M R, Dodd P E 2000 IEEE Trans. Nucl. Sci. 47 2175
[11] Ferlet-Cavrois V, Colladant T, Paillet P 2000 IEEE Trans. Nucl. Sci. 45 1817
[12] Mrstik B J, Hughes H L, McMarr P J 2000 IEEE Trans. Nucl. Sci. 47 2189
[13] Cavrois V F, Colladant T, Paillet P, Leray J L, Musseau O, Schwank J R, Shaneyfelt M R 2000 IEEE Trans. Nucl. Sci. 47 2183
[14] Zhuo Q Q, Liu H X, Yang Z N, Cai H M, Hao Y 2012 Acta Phys. Sin. 61 220702 (in Chinese) [卓青青, 刘红侠, 杨兆年, 蔡惠民, 郝跃 2012 61 220702]
[15] Faccio F, Cervelli G 2005 IEEE Trans. Nucl. Sci. 52 2413
[16] Saks N S, Ancona M G, Rendell R W 2002 Appl. Phys. Lett. 80 3219
[17] Galloway K F, Gaitan M, Russell T J 1984 IEEE Trans. Nucl. Sci. 31 1497
[18] Rowlands D D, Dimitrijev S 1991 Microelectron Conf. 1911 p130
[19] ATLAS version 5.6.0.R, SILVACO
计量
- 文章访问数: 6898
- PDF下载量: 840
- 被引次数: 0