搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

工艺偏差下PMOS器件的负偏置温度不稳定效应分布特性

汤华莲 许蓓蕾 庄奕琪 张丽 李聪

引用本文:
Citation:

工艺偏差下PMOS器件的负偏置温度不稳定效应分布特性

汤华莲, 许蓓蕾, 庄奕琪, 张丽, 李聪

Distribution characteristic of p-channel metal-oxide-semiconductor negative bias temperature instability effect under process variations

Tang Hua-Lian, Xu Bei-Lei, Zhuang Yi-Qi, Zhang Li, Li Cong
PDF
导出引用
  • 当器件特征尺寸进入纳米级,负偏置温度不稳定性(NBTI)效应和工艺偏差都会导致p 型金属氧化层半导体(PMOS)器件性能和可靠性的下降. 基于反应-扩散(R-D)模型,本文分析了工艺偏差对NBTI效应的影响;在此基础上将氧化层厚度误差和初始阈值电压误差引入到R-D模型中,提出了在工艺偏差下PMOS器件的NBTI效应统计模型. 基于65 nm工艺,首先蒙特卡罗仿真表明在工艺偏差和NBTI效应共同作用下,PMOS器件阈值电压虽然会随着应力时间增大而沿着负方向增加,但是阈值电压的匹配性却随着时间推移而变好;其次验证本文提出的统计模型准确性,以R-D模型为参考,在104 s应力时间内,PMOS 器件阈值电压退化量平均值和均方差的最大相对误差分别为0.058%和0.91%;最后将此模型应用到电流舵型数模转换器中,仿真结果显示在工艺偏差和NBTI效应共同作用下,数模转换器的增益误差会随着应力时间的推移而增大,而线性误差会逐渐减小.
    Negative bias temperature instability (NBTI) is a p-channel metal-oxide-semiconductor (PMOS) degradation mechanism, which becomes one of the important reliability concerns. The NBTI drastically influences device performance and circuit lifetime. On the other hand, the circuit performance is also affected by the fabrication-induced process variation when the transistor size shrinks to a nanometer-scale. In the presence of the fabrication-induced random variations, the NBTI aging process and its influence on PMOS device become a random process. In this paper, the joint effects of NBTI and process variations on PMOS device are investigated. Firstly, the influence of process variation on NBTI aging is analyzed based on the reaction-diffusion (R-D) mechanism. The NBTI-induced PMOS threshold voltage degradation depends not only on stress time but also on fabrication-determined process parameters, such as the initial threshold voltage and oxide thickness. Then the statistical model is proposed to model NBTI-induced aging under process variation, which captures the threshold voltage variation and oxide thickness variation as random vectors with normal distributions. For 100-times Monte-Carlo simulation based on 65 nm technology, the voltage error and oxide thickness error of the PMOS device are obtained. Applying these process errors to the statistical model, the results show that mean value of threshold voltages is increased along the negative direction with the stress time going on under the process variation and NBTI effect interaction. Meanwhile the standard deviation of threshold voltage is reduced, which represents that the matching between those PMOS devices becomes better. The proposed statistical model accuracy is verified by R-D model theoretical solutions. The maximum relative error of the mean value and of the standard deviations for the threshold voltages degradation of the PMOS device are only 0.058% and 0.91% respectively in 104 s. The distribution characteristic of PMOS NBTI effect is more serious to analog circuit, because analog circuit is more sensitive to device mismatch. For current steering digital-to-analog converter (DAC), PMOS device is always adopted as current source due to its good isolating properties. The PMOS current source requires good matching, and mismatch error could cause circuit failure. To realize aging simulation on DAC circuit in Spectre environment, the above statistical NBTI model is realized by Verilog-ASM language as the subcircuit module to PMOS device. Finally, this module is applied to the current steering DAC. Considering the NBTI effect under process variations, the simulation results show that the DAC gain error is increased with the stress time going on, while its linearity error is gradually reduced.
      通信作者: 汤华莲, lily_thl@126.com
    • 基金项目: 国家自然科学基金(批准号:61574109)、微光夜视技术重点实验室基金项目(批准号:9140C380502150C38001)和中央高校基本科研业务费(批准号:JB141109)资助的课题.
      Corresponding author: Tang Hua-Lian, lily_thl@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61574109), the Science and Technology on Low-Light-Level Night Vision Laboratory, China (Grant No. 9140C380502150C38001), and the Fundamental Research Fund for the Central Universities, China (Grant No. JB141109).
    [1]

    Tibor G, Karina R, Hans R 2014 IEEE Trans. Electron Devices 61 3586

    [2]

    Blat C E, Nicollian E H 1991 J. Appl. Phys. 69 1712

    [3]

    Shigeo O, Masakazu S 1995 J. Appl. Phys. 77 1137

    [4]

    Li Z H,Liu H X,Hao Y 2006 Acta Phys. Sin. 55 820 (in Chinese) [李忠贺, 刘红霞, 郝跃 2006 55 820]

    [5]

    Chen S M, Chen J J, Chi Y Q, Liu F Y, He Y B 2012 Sci. China Ser. E 55 1101

    [6]

    Tsai Y S 2010 IEEE International Reliability Physics Symposium Anaheim, USA, May 2-6, 2010 p665

    [7]

    Cenk Y, Leonhard H, Christoph W, Doris S L 2013 IEEE International Reliability Physics Symposium Monterey, USA, April 14-18, 2013 p2A.4.1

    [8]

    Mahapatra S, Huard V, Kerber A, Reddy V, Kalpat S, Haggag A 2014 IEEE International Reliability Physics Symposium Waikoloa, USA, June 1-5, 2014 p3B.1

    [9]

    Tang H L, Zhuang Y Q, Xi W, Zhang L 2013 J. Huazhong Univ. Sci. Tech. (Natural Science Edition) 41 22 (in Chinese) [汤华莲, 庄奕琪, 席望, 张丽 2013 华中科技大学学报(自然科学版) 41 22]

    [10]

    Bhardwaj S, Wang W, Vattikonda R, Cao Y, Vrudhula S 2006 Proceedings of the IEEE 2006 Custom Integrated Circuits Conference San Jose, USA, September 10-13, 2006 p189

    [11]

    Pelgrom, Marcel J M, Duinmaijer, Aad C J, Welbers, Anton P G 1989 IEEE J. Solid State Circuits 24 1433

    [12]

    Wen P W, Vijay R, Anand T 2007 IEEE Trans. Device Mater. Reliab. 7 509

    [13]

    Jeppson K, Svensson C 1977 J. Appl. Phys. 48 2004

    [14]

    Van Den Bosch A, Borremans M A F, Steyaert M S J, Sansen W 2001 IEEE J. Solid State Circuits 36 315

  • [1]

    Tibor G, Karina R, Hans R 2014 IEEE Trans. Electron Devices 61 3586

    [2]

    Blat C E, Nicollian E H 1991 J. Appl. Phys. 69 1712

    [3]

    Shigeo O, Masakazu S 1995 J. Appl. Phys. 77 1137

    [4]

    Li Z H,Liu H X,Hao Y 2006 Acta Phys. Sin. 55 820 (in Chinese) [李忠贺, 刘红霞, 郝跃 2006 55 820]

    [5]

    Chen S M, Chen J J, Chi Y Q, Liu F Y, He Y B 2012 Sci. China Ser. E 55 1101

    [6]

    Tsai Y S 2010 IEEE International Reliability Physics Symposium Anaheim, USA, May 2-6, 2010 p665

    [7]

    Cenk Y, Leonhard H, Christoph W, Doris S L 2013 IEEE International Reliability Physics Symposium Monterey, USA, April 14-18, 2013 p2A.4.1

    [8]

    Mahapatra S, Huard V, Kerber A, Reddy V, Kalpat S, Haggag A 2014 IEEE International Reliability Physics Symposium Waikoloa, USA, June 1-5, 2014 p3B.1

    [9]

    Tang H L, Zhuang Y Q, Xi W, Zhang L 2013 J. Huazhong Univ. Sci. Tech. (Natural Science Edition) 41 22 (in Chinese) [汤华莲, 庄奕琪, 席望, 张丽 2013 华中科技大学学报(自然科学版) 41 22]

    [10]

    Bhardwaj S, Wang W, Vattikonda R, Cao Y, Vrudhula S 2006 Proceedings of the IEEE 2006 Custom Integrated Circuits Conference San Jose, USA, September 10-13, 2006 p189

    [11]

    Pelgrom, Marcel J M, Duinmaijer, Aad C J, Welbers, Anton P G 1989 IEEE J. Solid State Circuits 24 1433

    [12]

    Wen P W, Vijay R, Anand T 2007 IEEE Trans. Device Mater. Reliab. 7 509

    [13]

    Jeppson K, Svensson C 1977 J. Appl. Phys. 48 2004

    [14]

    Van Den Bosch A, Borremans M A F, Steyaert M S J, Sansen W 2001 IEEE J. Solid State Circuits 36 315

  • [1] 金冬月, 曹路明, 王佑, 贾晓雪, 潘永安, 周钰鑫, 雷鑫, 刘圆圆, 杨滢齐, 张万荣. 基于工艺偏差的自旋转移矩辅助压控磁各向异性磁隧道结电学模型及其应用研究.  , 2022, 71(10): 107501. doi: 10.7498/aps.71.20211700
    [2] 金冬月, 陈虎, 王佑, 张万荣, 那伟聪, 郭斌, 吴玲, 杨绍萌, 孙晟. 基于工艺偏差的电压调控磁各向异性磁隧道结电学模型及其在读写电路中的应用.  , 2020, 69(19): 198502. doi: 10.7498/aps.69.20200228
    [3] 范敏敏, 徐静平, 刘璐, 白玉蓉, 黄勇. 高k栅介质GeOI金属氧化物半导体场效应管阈值电压和亚阈斜率模型及其器件结构设计.  , 2014, 63(8): 087301. doi: 10.7498/aps.63.087301
    [4] 刘翔宇, 胡辉勇, 张鹤鸣, 宣荣喜, 宋建军, 舒斌, 王斌, 王萌. 具有poly-Si1-xGex栅的应变SiGep型金属氧化物半导体场效应晶体管阈值电压漂移模型研究.  , 2014, 63(23): 237302. doi: 10.7498/aps.63.237302
    [5] 胡辉勇, 刘翔宇, 连永昌, 张鹤鸣, 宋建军, 宣荣喜, 舒斌. γ射线总剂量辐照效应对应变Sip型金属氧化物半导体场效应晶体管阈值电压与跨导的影响研究.  , 2014, 63(23): 236102. doi: 10.7498/aps.63.236102
    [6] 周春宇, 张鹤鸣, 胡辉勇, 庄奕琪, 舒斌, 王斌, 王冠宇. 应变Si NMOSFET阈值电压集约物理模型.  , 2013, 62(7): 077103. doi: 10.7498/aps.62.077103
    [7] 张月, 卓青青, 刘红侠, 马晓华, 郝跃. 功率MOSFET的负偏置温度不稳定性效应中的平衡现象.  , 2013, 62(16): 167305. doi: 10.7498/aps.62.167305
    [8] 辛艳辉, 刘红侠, 范小娇, 卓青青. 单Halo全耗尽应变Si 绝缘硅金属氧化物半导体场效应管的阈值电压解析模型.  , 2013, 62(10): 108501. doi: 10.7498/aps.62.108501
    [9] 胡辉勇, 雷帅, 张鹤鸣, 宋建军, 宣荣喜, 舒斌, 王斌. Poly-Si1-xGex栅应变SiN型金属-氧化物-半导体场效应管栅耗尽模型研究.  , 2012, 61(10): 107301. doi: 10.7498/aps.61.107301
    [10] 李立, 刘红侠, 杨兆年. 量子阱Si/SiGe/Sip型场效应管阈值电压和沟道空穴面密度模型.  , 2012, 61(16): 166101. doi: 10.7498/aps.61.166101
    [11] 李妤晨, 张鹤鸣, 张玉明, 胡辉勇, 徐小波, 秦珊珊, 王冠宇. 新型高速半导体器件IMOS阈值电压解析模型.  , 2012, 61(4): 047303. doi: 10.7498/aps.61.047303
    [12] 王冠宇, 张鹤鸣, 王晓艳, 吴铁峰, 王斌. 亚100 nm应变Si/SiGe nMOSFET阈值电压二维解析模型.  , 2011, 60(7): 077106. doi: 10.7498/aps.60.077106
    [13] 屈江涛, 张鹤鸣, 王冠宇, 王晓艳, 胡辉勇. 多晶SiGe栅量子阱pMOSFET阈值电压模型.  , 2011, 60(5): 058502. doi: 10.7498/aps.60.058502
    [14] 陈建军, 陈书明, 梁斌, 刘必慰, 池雅庆, 秦军瑞, 何益百. p型金属氧化物半导体场效应晶体管界面态的积累对单粒子电荷共享收集的影响.  , 2011, 60(8): 086107. doi: 10.7498/aps.60.086107
    [15] 汤晓燕, 张义门, 张玉明. SiC肖特基源漏MOSFET的阈值电压.  , 2009, 58(1): 494-497. doi: 10.7498/aps.58.494
    [16] 张志锋, 张鹤鸣, 胡辉勇, 宣荣喜, 宋建军. 应变Si沟道nMOSFET阈值电压模型.  , 2009, 58(7): 4948-4952. doi: 10.7498/aps.58.4948
    [17] 张鹤鸣, 崔晓英, 胡辉勇, 戴显英, 宣荣喜. 应变SiGe SOI量子阱沟道PMOSFET阈值电压模型研究.  , 2007, 56(6): 3504-3508. doi: 10.7498/aps.56.3504
    [18] 李艳萍, 徐静平, 陈卫兵, 许胜国, 季 峰. 考虑量子效应的短沟道MOSFET二维阈值电压模型.  , 2006, 55(7): 3670-3676. doi: 10.7498/aps.55.3670
    [19] 代月花, 陈军宁, 柯导明, 孙家讹. 考虑量子化效应的MOSFET阈值电压解析模型.  , 2005, 54(2): 897-901. doi: 10.7498/aps.54.897
    [20] 郑中山, 刘忠立, 张国强, 李 宁, 范 楷, 张恩霞, 易万兵, 陈 猛, 王 曦. 埋氧层注氮工艺对部分耗尽SOI nMOSFET特性的影响.  , 2005, 54(1): 348-353. doi: 10.7498/aps.54.348
计量
  • 文章访问数:  7160
  • PDF下载量:  236
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-18
  • 修回日期:  2016-05-18
  • 刊出日期:  2016-08-05

/

返回文章
返回
Baidu
map