-
本文对PD SOI NMOS器件进行了60Coγ射线总剂量辐照的实验测试, 分析了不同的栅长对器件辐射效应的影响及其物理机理. 研究结果表明, 短沟道器件辐照后感生的界面态密度更大, 使器件跨导出现退化. PD SOI器件的局部浮体效应是造成不同栅长器件辐照后输出特性变化不一致的主要原因. 短沟道器件输出特性的击穿电压更低. 在关态偏置条件下, 由于背栅晶体管更严重的辐射效应, 短沟道SOI器件的电离辐射效应比同样偏置条件下长沟道器件严重.
-
关键词:
- PD SOI NMOS /
- 总剂量辐照效应 /
- 栅长 /
- 偏置状态
The gate length dependence of PD SOI NMOS device on total dose irradiation is investigated, which is exposed to 60Co gamma ray at a dose rate of 50 rad(Si)/s. The result shows that the transistor with shorter gate length shows larger radiation-induced interface trap density, which leads to the maximum transconductance degradation. The local floating body effect induces the output characteristic variation of irradiated MOSFET with gate length. After irradiation, the breakdown voltage of short channel SOI device decreases. Due to the buried oxide, the radiation-induced degradation of short channel SOI device is much serious compared with that of long channel SOI device.-
Keywords:
- PD SOI NMOS /
- total ionizing dose /
- gate length /
- bias state
[1] Schwank J R, Ferlet-cavrois V, Shaneyfelt M R, Paillet P, Dodd P E 2003 IEEE Trans. Nucl. Sci. 50 522
[2] Schwank J R, Shaneyfelt M R, Fleetwood D M, Felix J A, Dodd P E, Paillet P, Ferlet-Cavrois V 2008 IEEE Trans. Nucl. Sci. 55 1833
[3] Felix J A, Schwank J R, Cirba C R, Schrimpf R D, Shaneyfelt M R, Fleetwood D M, Dodd P E 2004 Microelectronic Engineering 72 332
[4] Schrpulla J, Amram A L, Gin V W, Morse T C, Nakamura K T 1992 IEEE Trans. Nucl. Sci. 39 1992
[5] Djezzar B, Smatti A, Amrouche A, Kechouane M 2000 IEEE Trans. Nucl. Sci. 47 1872
[6] Hu Z Y, Liu Z L, Shao H, Zheng Z X, Ning B X, Bi D W, Chen M, Zuo S C 2012 Acta Phys.Sin. 61 050702 (in Chinese) [胡志远, 刘张李, 邵华, 张正选, 宁冰旭, 毕大炜, 陈明, 邹世昌 2012 61 050702]
[7] Liu Z L, Hu Z X, Zhang Z X, Shao H, Ning B X, Bi D W, Chen M, Zou S C 2011 Acta Phys. Sin. 60 116013 (in Chinese) [刘张李, 胡志远, 张正选, 邵华, 宁冰旭, 毕大炜, 陈明, 邹世昌 2011 60 116013]
[8] Liu Z L, Hu Z Y, Zhang Z X, Shao H, Chen M, Bi D W, Ning B X , Zuo S C 2011 Chinese Journal of Semiconductors 32 064004 (in Chinese) [刘张李, 胡志远, 张正选, 邵华, 陈明, 毕大炜, 宁冰旭, 邹世昌 2011 半导体学报 32 064004]
[9] Freeman R F A, Holmes-Siedle A G 1978 IEEE Trans. Nucl. Sci. 25 1216
[10] McGarrity J M 1980 IEEE Trans. Nucl. Sci. 27 1739
[11] Benedetto J M, Boesch H E 1986 IEEE Trans. Nucl. Sci. 33 1318
[12] Wang S H, Pei Y P, Huang R, Wang W H, Liu W, Xue S B, An X, Tian J Q, Wang Y Y 2010 J. Appl. Phys. 107 024515
-
[1] Schwank J R, Ferlet-cavrois V, Shaneyfelt M R, Paillet P, Dodd P E 2003 IEEE Trans. Nucl. Sci. 50 522
[2] Schwank J R, Shaneyfelt M R, Fleetwood D M, Felix J A, Dodd P E, Paillet P, Ferlet-Cavrois V 2008 IEEE Trans. Nucl. Sci. 55 1833
[3] Felix J A, Schwank J R, Cirba C R, Schrimpf R D, Shaneyfelt M R, Fleetwood D M, Dodd P E 2004 Microelectronic Engineering 72 332
[4] Schrpulla J, Amram A L, Gin V W, Morse T C, Nakamura K T 1992 IEEE Trans. Nucl. Sci. 39 1992
[5] Djezzar B, Smatti A, Amrouche A, Kechouane M 2000 IEEE Trans. Nucl. Sci. 47 1872
[6] Hu Z Y, Liu Z L, Shao H, Zheng Z X, Ning B X, Bi D W, Chen M, Zuo S C 2012 Acta Phys.Sin. 61 050702 (in Chinese) [胡志远, 刘张李, 邵华, 张正选, 宁冰旭, 毕大炜, 陈明, 邹世昌 2012 61 050702]
[7] Liu Z L, Hu Z X, Zhang Z X, Shao H, Ning B X, Bi D W, Chen M, Zou S C 2011 Acta Phys. Sin. 60 116013 (in Chinese) [刘张李, 胡志远, 张正选, 邵华, 宁冰旭, 毕大炜, 陈明, 邹世昌 2011 60 116013]
[8] Liu Z L, Hu Z Y, Zhang Z X, Shao H, Chen M, Bi D W, Ning B X , Zuo S C 2011 Chinese Journal of Semiconductors 32 064004 (in Chinese) [刘张李, 胡志远, 张正选, 邵华, 陈明, 毕大炜, 宁冰旭, 邹世昌 2011 半导体学报 32 064004]
[9] Freeman R F A, Holmes-Siedle A G 1978 IEEE Trans. Nucl. Sci. 25 1216
[10] McGarrity J M 1980 IEEE Trans. Nucl. Sci. 27 1739
[11] Benedetto J M, Boesch H E 1986 IEEE Trans. Nucl. Sci. 33 1318
[12] Wang S H, Pei Y P, Huang R, Wang W H, Liu W, Xue S B, An X, Tian J Q, Wang Y Y 2010 J. Appl. Phys. 107 024515
计量
- 文章访问数: 9044
- PDF下载量: 694
- 被引次数: 0