搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间太阳电池阵应变规律研究

殷茂淑 杨广 王训春 范斌 姜德鹏 杨洪东

引用本文:
Citation:

空间太阳电池阵应变规律研究

殷茂淑, 杨广, 王训春, 范斌, 姜德鹏, 杨洪东

Strain-testing research of space solar cell array

Yin Mao-Shu, Yang Guang, Wang Xun-Chun, Fan Bin, Jiang De-Peng, Yang Hong-Dong
PDF
HTML
导出引用
  • 空间太阳电池阵是卫星的唯一供电来源, 其在轨服役期间所受的力学作用将直接影响卫星的正常工作, 因此研究空间太阳电池阵的应力应变规律具有重要意义. 本文自主研制了空间太阳电池阵应变测试系统, 该系统可监测空间太阳电池阵在模拟真空热循环温度场环境下的应变规律. 研究结果表明, 空间太阳电池阵在高温发生压缩形变, 低温发生拉伸形变. 相同测试条件自由电池和粘接电池最大应变总量分别为1270 和1320 με. 此外, 空间太阳电池片中心区域应变值比边缘区域高113%. 空间太阳电池片断裂应变值为2080 με. 本研究为空间太阳电池阵抗力学性能研究提供了技术支撑.
    Space solar cell array is the only power source for satellites, and the mechanical impact on solar array during its in-orbit service will directly affect the normal operation of the satellites. Therefore, it is of great significance to study the stress and strain law of space solar array. In this paper, we establish a strain-testing system for space solar array, and this system can help test the strain data of space solar array under simulated space vacuum and thermal cycling field. We find that the space solar cells suffer compression deformation at high temperature and tensile deformation at low temperature. The total maximum strain of the free cell and pasted cell under the same conditions are 1270 and 1320 με, respectively. In addition, the strain of middle area is 113% higher than that of the edge area in one space solar cell. The rupturing strain of space solar cell is 2080 με. These measured data conduce to studying the deformation characteristics of solar cells in space environment, which can help researchers get the deformation regularity of space solar cells. They also provide experimental basis for stress-relieving arrangement of space solar array. This research provides technical support for studying the deformation resistance of space solar cells.
      通信作者: 殷茂淑, ymaoshu@163.com
      Corresponding author: Yin Mao-Shu, ymaoshu@163.com
    [1]

    Hoang B, Wong F K, Corey R L, Gardiner G, Funderburk V V, Gahart R L, Wright K H J, Schneider T A, Vaughn J A 2012 IEEE Trans. on Pla. Sci. 40 324Google Scholar

    [2]

    Shin G H, Kim D G, Kwon S J, Lee H S, Toyota H 2019 J. Kor. Phy. Soc. 74 1079Google Scholar

    [3]

    Hoang B, Beyene S, Harty T, Huang W, Hisiro W 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) Chicago, USA, June 16–21, 2019 p2781

    [4]

    Banik J A, Carpenter B F 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC) New Orleans, USA, June 14–19, 2015 p1

    [5]

    John Gibb 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) Waikoloa Village, USA, June 10–15, 2018 p3530

    [6]

    吴宜勇, 岳龙, 胡建民, 蓝慕杰, 肖景东, 杨德庄, 何世禹, 张忠卫, 钱勇, 陈鸣波 2011 60 098110Google Scholar

    Wu Y Y, Yue L, Hu J M, Lan M J, Xiao J D, Yang D Z, He S Y, Zhang Z W, Wang X C, Qian Y, Chen M B 2011 Acta Phys. Sin. 60 098110Google Scholar

    [7]

    王晓燕, 何世禹, 郑双 2005 太阳能学报 26 631Google Scholar

    Wang X Y, He S Y, Zheng S 2005 Acta Ener. Sol. Sin. 26 631Google Scholar

    [8]

    黄后学, 刘振宇, 陈娅琪, 吴慧英 2012 上海交通大学学报 46 790

    Huang H X, Liu Z Y, Chen Y Q, Wu H Y 2012 J. Shanghai Jiaotong Univ. 46 790

    [9]

    张丽新, 杨士勤, 何世禹 2006 中国胶粘剂 11 1Google Scholar

    Zhang L X, Yang S Q, He S Y 2006 China Adhe. 11 1Google Scholar

    [10]

    Dixit K K, Yadav I, Gupta G K, Maurya S K 2020 International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC) Mathura, India, Feb. 28–29, 2020 p360

    [11]

    Lisbona E F, Baur C, Witteveen B, Guiot M 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC) Denver, USA, June 8–13, 2014 p1802

    [12]

    Nguyen D H, Skladnay L M, Prats B D 2001 4th International Symposium on Environmental Testing for Space Programmes, Proceedings Liege, Belgium, June 12–14, 2001 p165

    [13]

    Li J L, Yan S Z, Cai R Y 2013 Aerospace Sci. Tech. 27 84Google Scholar

    [14]

    黄建国, 韩建伟, 李宏伟, 蔡明辉, 李小银 2008 57 7950Google Scholar

    Huang J G, Han J W, Li H W, Cai M H, Li X Y 2008 Acta Phys. Sin. 57 7950Google Scholar

    [15]

    王晓燕, 耿洪滨, 何世禹, 杨德庄 2006 航天器环境工程 23 34Google Scholar

    Wang X Y, Geng H B, He S Y, Yang D Z 2006 Spacecraft Env. Engin. 23 34Google Scholar

    [16]

    刘振宇, 陈娅琪, 吴慧英 2013 上海交通大学学报 47 1762

    Liu Z Y, Chen Y Q, Wu H Y 2013 Jour. Shanghai Jiaotong Univ. 47 1762

    [17]

    王晓燕, 耿洪滨, 何世禹, 杨德庄 2007 太阳能学报 28 345Google Scholar

    Wang X Y, Geng H B, He S Y, Yang D Z 2007 Acta Ener. Sol. Sin. 28 345Google Scholar

    [18]

    张冠敏, 杜晓光, 田茂诚 2015 太阳能学报 36 2094Google Scholar

    Zhang G M, Du X G, Tian M C 2015 Acta Ener. Sol. Sin. 36 2094Google Scholar

    [19]

    史加贝, 刘铸永, 洪嘉振 2017 宇航学报 38 789

    Shi J B, Liu Z Y, Hong J Z 2017 J. Astro. 38 789

    [20]

    王晓燕, 耿洪滨, 何世禹, 刘勇, Pokhyl Y O, Koval V K 2005 绝缘材料 2 34Google Scholar

    Wang X Y, Geng H B, He S Y, Liu Y, Pokhyl Y O, Koval V K 2005 Insulation Mat. 2 34Google Scholar

    [21]

    Zhang S J, Zhang Y H 2013 Adv. Mechat. Control Engineer, PTS 1–3 278 500

    [22]

    丁延卫, 王晓耕, 张立华, 潘增富 2009 航天器工程 18 44Google Scholar

    Ding Y W, Wang X G, Zhang L H, Pan Z F 2009 Spacecraft Eng. 18 44Google Scholar

    [23]

    Sun B, Li Y, Wang Z L, Ren Y, Feng Q, Yang D Z, Jiang H F 2019 IEEE Acce. 7 80840Google Scholar

  • 图 1  (a) 应变传感器的基本构造; (b)空间太阳电池阵应变测试系统组成

    Fig. 1.  (a) Basic structure of a strain sensor; (b) composition of space solar array strain test system.

    图 2  (a)电池粘贴应变传感器示意图; (b)应变信号采集线路连接示意图; (c)热真空实验温度曲线; (d)空间太阳电池热真空实验应变数据, 黑色为粘接在太阳翼基板上电池应变数据, 红色为未粘接自由状态电池应变数据

    Fig. 2.  (a) Schematic diagram of strain sensor pasted on a space solar cell; (b) schematic diagram for strain signal collection circuit; (c) temperature curve of thermal vacuum test; (d) strain curves of space solar cell during thermal vacuum test. The black line is strain data for solar cells bonded on the substrate, and the red one for free solar cells not bonded on substrate.

    图 3  (a) 热真空循环实验前后空间太阳电池的IV曲线; (b) 两类空间太阳电池阵应变规律总结

    Fig. 3.  (a) IV curves of space solar cell before and after thermal vacuum test; (b) strain summary of free and pasted space solar cells.

    图 4  (a) 同片电池粘贴应变传感器的示意图; (b) 热真空实验温度曲线; (c) 同片空间太阳电池不同位置热真空实验应变数据, 红色为太阳电池中心区域应变数据, 黑色为太阳电池边缘区域应变数据; (d) 同片空间太阳电池片应变规律总结

    Fig. 4.  (a) Schematic diagram of strain sensors pasted on one space solar cell; (b) temperature curve of thermal vacuum test; (c) strain curves test from different area in one space solar cell during thermal vacuum test, where the red line is strain data from the middle area of the solar cell, and the black one from the edge area of the solar cell; (d) strain summary of one space solar cell.

    图 5  (a) 弯曲实验工装凸槽; (b)弯曲实验工装凹槽; (c)太阳电池断裂应变数据曲线; (d)空间太阳电池断裂实物图

    Fig. 5.  (a) Convex equipment for bending test; (b) concave equipment for bending test; (c) rupturing strain curve of space solar cell; (d) picture of a ruptured space solar cell.

    图 6  不同弯曲半径下电池应变值拟合曲线

    Fig. 6.  Strain data fitting curve of space solar cell under different bending radius.

    表 1  不同弯曲半径条件下电池应变值

    Table 1.  Strain data of space solar cell under different bending radius conditions.

    弯曲半径/cm2017.51512.5107.55
    电池应变值/με401577810945121015502080
    下载: 导出CSV
    Baidu
  • [1]

    Hoang B, Wong F K, Corey R L, Gardiner G, Funderburk V V, Gahart R L, Wright K H J, Schneider T A, Vaughn J A 2012 IEEE Trans. on Pla. Sci. 40 324Google Scholar

    [2]

    Shin G H, Kim D G, Kwon S J, Lee H S, Toyota H 2019 J. Kor. Phy. Soc. 74 1079Google Scholar

    [3]

    Hoang B, Beyene S, Harty T, Huang W, Hisiro W 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) Chicago, USA, June 16–21, 2019 p2781

    [4]

    Banik J A, Carpenter B F 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC) New Orleans, USA, June 14–19, 2015 p1

    [5]

    John Gibb 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) Waikoloa Village, USA, June 10–15, 2018 p3530

    [6]

    吴宜勇, 岳龙, 胡建民, 蓝慕杰, 肖景东, 杨德庄, 何世禹, 张忠卫, 钱勇, 陈鸣波 2011 60 098110Google Scholar

    Wu Y Y, Yue L, Hu J M, Lan M J, Xiao J D, Yang D Z, He S Y, Zhang Z W, Wang X C, Qian Y, Chen M B 2011 Acta Phys. Sin. 60 098110Google Scholar

    [7]

    王晓燕, 何世禹, 郑双 2005 太阳能学报 26 631Google Scholar

    Wang X Y, He S Y, Zheng S 2005 Acta Ener. Sol. Sin. 26 631Google Scholar

    [8]

    黄后学, 刘振宇, 陈娅琪, 吴慧英 2012 上海交通大学学报 46 790

    Huang H X, Liu Z Y, Chen Y Q, Wu H Y 2012 J. Shanghai Jiaotong Univ. 46 790

    [9]

    张丽新, 杨士勤, 何世禹 2006 中国胶粘剂 11 1Google Scholar

    Zhang L X, Yang S Q, He S Y 2006 China Adhe. 11 1Google Scholar

    [10]

    Dixit K K, Yadav I, Gupta G K, Maurya S K 2020 International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC) Mathura, India, Feb. 28–29, 2020 p360

    [11]

    Lisbona E F, Baur C, Witteveen B, Guiot M 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC) Denver, USA, June 8–13, 2014 p1802

    [12]

    Nguyen D H, Skladnay L M, Prats B D 2001 4th International Symposium on Environmental Testing for Space Programmes, Proceedings Liege, Belgium, June 12–14, 2001 p165

    [13]

    Li J L, Yan S Z, Cai R Y 2013 Aerospace Sci. Tech. 27 84Google Scholar

    [14]

    黄建国, 韩建伟, 李宏伟, 蔡明辉, 李小银 2008 57 7950Google Scholar

    Huang J G, Han J W, Li H W, Cai M H, Li X Y 2008 Acta Phys. Sin. 57 7950Google Scholar

    [15]

    王晓燕, 耿洪滨, 何世禹, 杨德庄 2006 航天器环境工程 23 34Google Scholar

    Wang X Y, Geng H B, He S Y, Yang D Z 2006 Spacecraft Env. Engin. 23 34Google Scholar

    [16]

    刘振宇, 陈娅琪, 吴慧英 2013 上海交通大学学报 47 1762

    Liu Z Y, Chen Y Q, Wu H Y 2013 Jour. Shanghai Jiaotong Univ. 47 1762

    [17]

    王晓燕, 耿洪滨, 何世禹, 杨德庄 2007 太阳能学报 28 345Google Scholar

    Wang X Y, Geng H B, He S Y, Yang D Z 2007 Acta Ener. Sol. Sin. 28 345Google Scholar

    [18]

    张冠敏, 杜晓光, 田茂诚 2015 太阳能学报 36 2094Google Scholar

    Zhang G M, Du X G, Tian M C 2015 Acta Ener. Sol. Sin. 36 2094Google Scholar

    [19]

    史加贝, 刘铸永, 洪嘉振 2017 宇航学报 38 789

    Shi J B, Liu Z Y, Hong J Z 2017 J. Astro. 38 789

    [20]

    王晓燕, 耿洪滨, 何世禹, 刘勇, Pokhyl Y O, Koval V K 2005 绝缘材料 2 34Google Scholar

    Wang X Y, Geng H B, He S Y, Liu Y, Pokhyl Y O, Koval V K 2005 Insulation Mat. 2 34Google Scholar

    [21]

    Zhang S J, Zhang Y H 2013 Adv. Mechat. Control Engineer, PTS 1–3 278 500

    [22]

    丁延卫, 王晓耕, 张立华, 潘增富 2009 航天器工程 18 44Google Scholar

    Ding Y W, Wang X G, Zhang L H, Pan Z F 2009 Spacecraft Eng. 18 44Google Scholar

    [23]

    Sun B, Li Y, Wang Z L, Ren Y, Feng Q, Yang D Z, Jiang H F 2019 IEEE Acce. 7 80840Google Scholar

  • [1] 袁用开, 陈茜, 高廷红, 梁永超, 谢泉, 田泽安, 郑权, 陆飞. GaAs晶体在不同应变下生长过程的分子动力学模拟.  , 2023, 72(13): 136801. doi: 10.7498/aps.72.20221860
    [2] 王娜, 许会芳, 杨秋云, 章毛连, 林子敬. 单层CrI3电荷输运性质和光学性质应变调控的第一性原理研究.  , 2022, 71(20): 207102. doi: 10.7498/aps.71.20221019
    [3] 潘凤春, 林雪玲, 王旭明. 应变对(Ga, Mo)Sb磁学和光学性质影响的理论研究.  , 2022, 71(9): 096103. doi: 10.7498/aps.71.20212316
    [4] 卢群林, 杨伟煌, 熊飞兵, 林海峰, 庄芹芹. 双轴向应变对单层GeSe气体传感特性的影响.  , 2020, 69(19): 196801. doi: 10.7498/aps.69.20200539
    [5] 王鑫, 李桦, 董正超, 仲崇贵. 二维应变作用下超导薄膜LiFeAs的磁性和电子性质.  , 2019, 68(2): 027401. doi: 10.7498/aps.68.20180957
    [6] 邓春雨, 侯尚林, 雷景丽, 王道斌, 李晓晓. 单模光纤中用声波导布里渊散射同时测量温度和应变.  , 2016, 65(24): 240702. doi: 10.7498/aps.65.240702
    [7] 白敏, 宣荣喜, 宋建军, 张鹤鸣, 胡辉勇, 舒斌. 压应变Ge/(001)Si1-xGex空穴散射与迁移率模型.  , 2015, 64(3): 038501. doi: 10.7498/aps.64.038501
    [8] 王玉珍, 马颖, 周益春. 外延压应变对BaTiO3铁电体抗辐射性能影响的分子动力学研究.  , 2014, 63(24): 246101. doi: 10.7498/aps.63.246101
    [9] 王疆靖, 邵瑞文, 邓青松, 郑坤. 应变加载下Si纳米线电输运性能的原位电子显微学研究.  , 2014, 63(11): 117303. doi: 10.7498/aps.63.117303
    [10] 谢剑锋, 曹觉先. 六角氮化硼片能带结构的应变调控.  , 2013, 62(1): 017302. doi: 10.7498/aps.62.017302
    [11] 吴木生, 徐波, 刘刚, 欧阳楚英. 应变对单层二硫化钼能带影响的第一性原理研究.  , 2012, 61(22): 227102. doi: 10.7498/aps.61.227102
    [12] 黄诗浩, 李成, 陈城钊, 郑元宇, 赖虹凯, 陈松岩. N型掺杂应变Ge发光性质.  , 2012, 61(3): 036202. doi: 10.7498/aps.61.036202
    [13] 任晓栋, 刘建军, 张文清. 应变对层状锰系锂离子电池正极材料输出电压的影响.  , 2012, 61(18): 183101. doi: 10.7498/aps.61.183101
    [14] 顾芳, 张加宏, 杨丽娟, 顾斌. 应变石墨烯纳米带谐振特性的分子动力学研究.  , 2011, 60(5): 056103. doi: 10.7498/aps.60.056103
    [15] 姚文杰, 俞重远, 刘玉敏, 芦鹏飞. 基于连续弹性理论分析量子线线宽对应变分布和带隙的影响.  , 2009, 58(2): 1185-1189. doi: 10.7498/aps.58.1185
    [16] 崔玉亭, 游素琴, 武亮, 马勇, 陈京兰, 潘复生, 吴光恒. Ni53.2Mn22.6Ga24.2单晶的两步热弹性马氏体相变及其应力应变特性.  , 2009, 58(12): 8596-8601. doi: 10.7498/aps.58.8596
    [17] 姚 飞, 薛春来, 成步文, 王启明. 重掺B对应变SiGe材料能带结构的影响.  , 2007, 56(11): 6654-6659. doi: 10.7498/aps.56.6654
    [18] 张开骁, 陈敦军, 沈 波, 陶亚奇, 吴小山, 徐 金, 张 荣, 郑有炓. 表面钝化前后Al0.22Ga0.78N/GaN异质结势垒层应变的高温特性.  , 2006, 55(3): 1402-1406. doi: 10.7498/aps.55.1402
    [19] 王焕友, 曹晓平, 蒋亦民, 刘 佑. 静止颗粒体的应变与弹性.  , 2005, 54(6): 2784-2790. doi: 10.7498/aps.54.2784
    [20] 崔玉亭, 朱亚波, 廖克俊, 王万录. Ni2MnGa单晶马氏体相变过程摩擦耗能的热动力学计算.  , 2004, 53(3): 861-866. doi: 10.7498/aps.53.861
计量
  • 文章访问数:  4729
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-14
  • 修回日期:  2021-05-20
  • 上网日期:  2021-09-18
  • 刊出日期:  2021-10-05

/

返回文章
返回
Baidu
map