搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于金属开口谐振环和杆阵列的左手材料宽带吸收器

樊京 蔡广宇

引用本文:
Citation:

一种基于金属开口谐振环和杆阵列的左手材料宽带吸收器

樊京, 蔡广宇

Broadband lefthanded metamaterial absorber based on split ring resonator and wire array

Fan Jing, Cai Guang-Yu
PDF
导出引用
  • 用数值仿真在微波X波段研究了金属开口谐振环和杆阵列这一最基本的谐振结构.通过合理的参数调节,这种结构在10.91 GHz附近可以表现出高达98%的吸收率,并且半高峰宽达到3.5 GHz.用散射参量提取法计算其有效电磁参数,发现在谐振频率附近其介电常数、磁导率和折射率的实部均为负值.相比于传统的左手材料,这种结构的电磁参数在谐振区域均具有较大的虚部,是形成高吸收率的根本原因.本文的左手材料吸收器在电磁加热、电磁隐身等领域具有许多潜在的应用.
    We studied the basic resonance structure of split ring resonator (SRR) and wire array at microwave X-band numerically. With proper design of parameters, this structure could achieve the absorptivity as high as 98% near the frequency of 10.91 GHz, and the FWHM of which is greater than 3.5 GHz. The scattering parameter retrieval method is employed to calculate the effective electromagnetic parameters. It is found that, close to the resonance frequency, the real components of the effective permittivity, permeability, and refractive index are all negative. However, the imaginary components of the electromagnetic parameters seem to be very large in the resonance region, which is the main reason of the high absorptivity. The broadband lefthanded metamaterial absorber presented in this paper has potential applications such as in electromagnetic heating and electromagnetic hiding.
    • 基金项目: 河南省杰出青年科学基金(批准号:0612002200),河南省科技攻关计划(批准号:0623021600)资助的课题.
    [1]

    Veselago V G 1968 Sov. Hys. Usp. 10 509

    [2]

    Shelby R, Smith D R, Schulrz S 2001 Science 292 77

    [3]

    Chen H S, Ran L X, Huangfu J T, Zhang X M, Chen K S, Grzegorczyk T M, Kong J A 2004 Phys. Rev. E 70 057605

    [4]

    Dong Z G, Xu M X, Lei S Y, Liu H, Li Tao, Wang F M, Zhu S N 2008 Appl. Phys. Lett. 92 064101

    [5]

    Zhou J F, Zhang L, Tuttle G, Koschny T, Soukoulis C M 2006 Phys. Rev. B 73 041101(R)

    [6]

    Zhu W R, Zhao X P, Guo J Q 2008 Appl. Phys. Lett. 92 241116

    [7]

    Zhu W R, Zhao X P 2009 J. Appl. Phys. 106 095311

    [8]

    Kafesaki M, Tsiapa I, Katsarakis N, Koschny T, Soukoulis C M, Economou E N 2007 Phys. Rev. B 75 235114

    [9]

    Zhu W R, Zhao X P 2009 Chin. Phys. Lett. 26 074212

    [10]

    Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov D A, Bartal G, Zhang X 2008 Nature 455 376

    [11]

    Yen T J, Padilla W J, Fang N, Vier D C, Smith D R, Pendry J B, Basov D N, Zhang X 2004 Science 303 1494

    [12]

    Zhu W R, Zhao X P, Ji N 2007 Appl. Phys. Lett. 90 011911

    [13]

    Zhang S, Fan W, Minhas B K, Frauenglass A, Malloy K J, Brueck S R J 2005 Phys. Rev. Lett. 95 137404

    [14]

    Dolling G, Wegener M, Soukoulis C M, Linden S 2007 Opt. Lett. 32 53

    [15]

    Sun M Z, Zhang C M, Song X P, Liang G Y, Sun Z B 2009 Acta Phys. Sin. 58 6179 (in Chinese) [孙明昭、张淳明、宋晓平、梁工英、孙占波 2009 58 6179]

    [16]

    Dolling G, Enkrich C, Wegener M, Soukoulis C M, Linden S 2006 Opt. Lett. 31 1800

    [17]

    Wu J F, Sun M Z, Zhang C M 2009 Acta Phys. Sin. 58 3844 (in Chinese) [吴俊芳、孙明昭、张淳明 2009 58 3844]

    [18]

    Luo C R, Wang L S, Guo J Q, Huang Y, Zhao X P 2009 Acta Phys. Sin. 58 3214 (in Chinese) [罗春荣、王连胜、郭继权、黄 勇、赵晓鹏 2009 58 3214]

    [19]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [20]

    Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J, Averitt R D 2008 Phys. Rev. B 78 241103(R)

    [21]

    Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B 79 125104

    [22]

    Smith D R, Schultz S, Markos P, Soukoulis C M 2002 Phys. Rev. B 65 195104

    [23]

    Wang J F, Qu S B, Xu Z, Zhang J Q, Ma H, Yang Y M, Gu C 2009 Acta Phys. Sin. 58 3224 (in Chinese) [王甲富、屈绍波、徐 卓、张介秋、马 华、杨一鸣、顾 超 2009 58 3224]

    [24]

    Garcia-Meca C, Ortuno R, Salvador R, Martinez A, Marti J 2007 Opt. Express 15 9320

    [25]

    Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. Microw. Theory Tech. 47 2075

  • [1]

    Veselago V G 1968 Sov. Hys. Usp. 10 509

    [2]

    Shelby R, Smith D R, Schulrz S 2001 Science 292 77

    [3]

    Chen H S, Ran L X, Huangfu J T, Zhang X M, Chen K S, Grzegorczyk T M, Kong J A 2004 Phys. Rev. E 70 057605

    [4]

    Dong Z G, Xu M X, Lei S Y, Liu H, Li Tao, Wang F M, Zhu S N 2008 Appl. Phys. Lett. 92 064101

    [5]

    Zhou J F, Zhang L, Tuttle G, Koschny T, Soukoulis C M 2006 Phys. Rev. B 73 041101(R)

    [6]

    Zhu W R, Zhao X P, Guo J Q 2008 Appl. Phys. Lett. 92 241116

    [7]

    Zhu W R, Zhao X P 2009 J. Appl. Phys. 106 095311

    [8]

    Kafesaki M, Tsiapa I, Katsarakis N, Koschny T, Soukoulis C M, Economou E N 2007 Phys. Rev. B 75 235114

    [9]

    Zhu W R, Zhao X P 2009 Chin. Phys. Lett. 26 074212

    [10]

    Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov D A, Bartal G, Zhang X 2008 Nature 455 376

    [11]

    Yen T J, Padilla W J, Fang N, Vier D C, Smith D R, Pendry J B, Basov D N, Zhang X 2004 Science 303 1494

    [12]

    Zhu W R, Zhao X P, Ji N 2007 Appl. Phys. Lett. 90 011911

    [13]

    Zhang S, Fan W, Minhas B K, Frauenglass A, Malloy K J, Brueck S R J 2005 Phys. Rev. Lett. 95 137404

    [14]

    Dolling G, Wegener M, Soukoulis C M, Linden S 2007 Opt. Lett. 32 53

    [15]

    Sun M Z, Zhang C M, Song X P, Liang G Y, Sun Z B 2009 Acta Phys. Sin. 58 6179 (in Chinese) [孙明昭、张淳明、宋晓平、梁工英、孙占波 2009 58 6179]

    [16]

    Dolling G, Enkrich C, Wegener M, Soukoulis C M, Linden S 2006 Opt. Lett. 31 1800

    [17]

    Wu J F, Sun M Z, Zhang C M 2009 Acta Phys. Sin. 58 3844 (in Chinese) [吴俊芳、孙明昭、张淳明 2009 58 3844]

    [18]

    Luo C R, Wang L S, Guo J Q, Huang Y, Zhao X P 2009 Acta Phys. Sin. 58 3214 (in Chinese) [罗春荣、王连胜、郭继权、黄 勇、赵晓鹏 2009 58 3214]

    [19]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [20]

    Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J, Averitt R D 2008 Phys. Rev. B 78 241103(R)

    [21]

    Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B 79 125104

    [22]

    Smith D R, Schultz S, Markos P, Soukoulis C M 2002 Phys. Rev. B 65 195104

    [23]

    Wang J F, Qu S B, Xu Z, Zhang J Q, Ma H, Yang Y M, Gu C 2009 Acta Phys. Sin. 58 3224 (in Chinese) [王甲富、屈绍波、徐 卓、张介秋、马 华、杨一鸣、顾 超 2009 58 3224]

    [24]

    Garcia-Meca C, Ortuno R, Salvador R, Martinez A, Marti J 2007 Opt. Express 15 9320

    [25]

    Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. Microw. Theory Tech. 47 2075

  • [1] 金嘉升, 马成举, 张垚, 张跃斌, 鲍士仟, 李咪, 李东明, 刘洺, 刘芊震, 张贻歆. 基于相变材料的慢光和吸收可切换多功能太赫兹超材料.  , 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [2] 江孝伟, 武华. 吸收波长和吸收效率可控的超材料吸收器.  , 2021, 70(2): 027804. doi: 10.7498/aps.70.20201173
    [3] 翟世龙, 王元博, 赵晓鹏. 基于声学超材料的低频可调吸收器.  , 2019, 68(3): 034301. doi: 10.7498/aps.68.20181908
    [4] 吴良威, 张正平. 基于多开口田字形宽频带低损耗左手材料.  , 2016, 65(16): 164101. doi: 10.7498/aps.65.164101
    [5] 杨怀, 王春华, 郭小蓉. 基于正六边形多开口的新型双频带左手材料.  , 2014, 63(1): 014103. doi: 10.7498/aps.63.014103
    [6] 马岩冰, 张怀武, 李元勋. 基于科赫分形的新型超材料双频吸收器.  , 2014, 63(11): 118102. doi: 10.7498/aps.63.118102
    [7] 刘亚红, 方石磊, 顾帅, 赵晓鹏. 多频与宽频超材料吸收器.  , 2013, 62(13): 134102. doi: 10.7498/aps.62.134102
    [8] 戴雨涵, 陈小浪, 赵强, 张继华, 陈宏伟, 杨传仁. 太赫兹波段谐振频率可调的开口谐振环结构.  , 2013, 62(6): 064101. doi: 10.7498/aps.62.064101
    [9] 杨晨, 张洪欣, 王海侠, 徐楠, 许媛媛, 黄丽玉, 张可欣. 十字环型左手材料单元结构设计与仿真.  , 2012, 61(16): 164101. doi: 10.7498/aps.61.164101
    [10] 郭林燕, 杨河林, 李敏华, 高超嵩, 田原. 单方环结构左手材料微带天线.  , 2012, 61(1): 014102. doi: 10.7498/aps.61.014102
    [11] 李文强, 曹祥玉, 高军, 刘涛, 姚旭, 马嘉俊. 基于斜三角开口对环的宽带低耗左手材料.  , 2012, 61(15): 154102. doi: 10.7498/aps.61.154102
    [12] 沈晓鹏, 崔铁军, 叶建祥. 基于超材料的微波双波段吸收器.  , 2012, 61(5): 058101. doi: 10.7498/aps.61.058101
    [13] 王甲富, 屈绍波, 徐卓, 夏颂, 张介秋, 马华, 杨一鸣, 吴翔. 电谐振器和磁谐振器构成的左手材料的实验验证.  , 2010, 59(3): 1847-1850. doi: 10.7498/aps.59.1847
    [14] 张淳民, 孙明昭, 袁志林, 宋晓平. 基于三角谐振环的新型六边形谐振环金属线复合周期结构左手材料性质研究.  , 2009, 58(3): 1758-1764. doi: 10.7498/aps.58.1758
    [15] 杨一鸣, 屈绍波, 王甲富, 徐卓. 由同时具有磁谐振和电谐振结构组成的左手材料.  , 2009, 58(2): 1031-1035. doi: 10.7498/aps.58.1031
    [16] 孙明昭, 张淳民, 宋晓平, 梁工英, 孙占波. 基于矩形谐振环的新型复合周期结构左手材料研究.  , 2009, 58(9): 6179-6184. doi: 10.7498/aps.58.6179
    [17] 王甲富, 屈绍波, 徐 卓, 张介秋, 杨一鸣, 马 华. 磁谐振和电谐振结构构成的左手材料设计.  , 2008, 57(8): 5015-5019. doi: 10.7498/aps.57.5015
    [18] 艾 芬, 白 洋, 徐 芳, 乔利杰, 周 济. 基于铁氧体基板的开口谐振环的可调微波左手特性研究.  , 2008, 57(7): 4189-4194. doi: 10.7498/aps.57.4189
    [19] 张富利, 赵晓鹏. 谐振频率可调的环状开口谐振器结构及其效应.  , 2007, 56(8): 4661-4667. doi: 10.7498/aps.56.4661
    [20] 罗春荣, 康 雷, 赵 乾, 付全红, 宋 娟, 赵晓鹏. 非均匀缺陷环对微波左手材料的影响.  , 2005, 54(4): 1607-1612. doi: 10.7498/aps.54.1607
计量
  • 文章访问数:  8555
  • PDF下载量:  1462
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-11-09
  • 修回日期:  2009-12-22
  • 刊出日期:  2010-09-15

/

返回文章
返回
Baidu
map