搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维本征铁电体及其多铁耦合的研究进展

叶倩 沈阳 袁野 赵祎峰 段纯刚

引用本文:
Citation:

二维本征铁电体及其多铁耦合的研究进展

叶倩, 沈阳, 袁野, 赵祎峰, 段纯刚

Recent research progress of two-dimensional intrinsic ferroelectrics and their multiferroic coupling

Ye Qian, Shen Yang, Yuan Ye, Zhao Yi-Feng, Duan Chun-Gang
PDF
HTML
导出引用
  • 铁电材料因其具有可被外场调控的电极化状态, 以及在传感器、光电器件和信息存储器件中具有潜在应用前景, 所以一直以来都是凝聚态物理领域的研究热点. 随着微电子集成技术的飞速发展, 电子器件日益趋于微型化、集成化和多功能化. 传统块体铁电材料因受尺寸效应、界面效应等因素影响, 难以满足此发展需求, 因而低维铁电材料引起了学术界的广泛关注. 近年来, 实验上已成功制备出稳定的室温二维铁电材料, 第一性原理计算等理论方法对新材料的预测和设计也促进了二维铁电材料的发展. 同时, 利用二维铁电性与铁谷性、磁性的多铁耦合效应, 可以实现电控谷极化、电控磁性等调控机制. 多重自由度的相互耦合, 会产生如能谷间圆(线)偏振光学选择性、量子自旋霍尔效应等奇异物理特性, 对于自旋电子学、谷电子学及光学的发展具有重大的意义. 本文首先介绍近年来新型二维铁电材料在理论和实验方面的研究进展, 以及二维铁电材料在铁电隧道结、铁电二极管等二维铁电器件中的应用. 其次阐述了二维电控铁谷性和电控磁性的多铁耦合效应及其衍生出的新物理现象和机制. 最后对二维铁电材料和其他物理性质耦合所具有的丰富物理内涵和广阔应用前景, 进行了分析与探讨.
    Ferroelectric materials have become a research focus of condensed matter physics because of their electric polarization state which can be regulated by external field and has potential applications in sensors, optoelectronic devices and information memory devices. With the rapid development of microelectronic integration technology, electronic devices are becoming more and more miniaturized, integrated and multifunctional. Due to the size effect and interface effect, the traditional bulk ferroelectric materials are difficult to meet the requirements for this development. Therefore, low-dimensional ferroelectric materials have received extensive attention of the academic circle. In recent years, stable room temperature intrinsic two-dimensional ferroelectric materials have been successfully prepared. The prediction and design of new materials in theoretical method such as first principles calculation also promote the development of two-dimensional ferroelectric materials. At the same time, the multiferroic coupling effect of two-dimensional ferroelectricity, ferrovalley and magnetism can be used to realize the electronic valley polarization, electronic magnetic control and other regulatory mechanisms. The coupling of multiple degrees of freedom will produce strange physical properties such as optical selectivity of circular (linear) polarization between energy valleys and quantum spin Hall effect, which is of great significance for developing spintronics, valley electronics and optics. In this paper, the recent progress of theoretical and experimental research of new two-dimensional ferroelectric materials is introduced, and the applications of two-dimensional ferroelectric materials in two-dimensional ferroelectric devices such as ferroelectric tunnel junctions and ferroelectric diodes are presented. Secondly, the multiferroic coupling effect of two-dimensional electrically controlled ferroelectric valley and electronically controlled magnetism and their derived new physical phenomena and mechanisms are described. Finally, the rich physical connotation and broad application prospects of coupling two-dimensional ferroelectric materials with other physical properties are analyzed and discussed.
      通信作者: 段纯刚, cgduan@clpm.ecnu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFA0303403)、上海市科技创新行动计划(批准号: 19JC1416700)和国家自然科学基金(批准号: 11774092)资助的课题
      Corresponding author: Duan Chun-Gang, cgduan@clpm.ecnu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0303403), the Shanghai Science and Technology Innovation Action Plan, China (Grant No. 19JC1416700), and the National Natural Science Foundation of China (Grant No.11774092)
    [1]

    Hoffman J, Pan X, Reiner J W, Walker F J, Han J P, Ahn C H, Ma T P 2010 Adv. Mater. 22 2957Google Scholar

    [2]

    Lu H D, Bark C W, Ojos D E L, Alcala J, Eom C, Catalan G, Gruverman A 2012 Science 336 59Google Scholar

    [3]

    Garcia V, Bibes M 2014 Nat. Commun. 5 4289Google Scholar

    [4]

    Sharma P, Zhang Q, Sando D, Lei C H, Liu Y Y, Li J Y, Nagarajan V, Seidel J 2017 Sci. Adv. 3 e1700512Google Scholar

    [5]

    Wu J B, Chen H Y, Yang N, Cao J, Yan X D, Liu F X, Sun Q B, Ling X, Guo J, Wang H 2020 Nat. Electron. 3 466Google Scholar

    [6]

    Wang X W, Yu P, Lei Z D, Zhu C, Cao X, Liu F C, You L, Zeng Q S, Deng Y, Zhu C, Zhou J D, Fu Q D, Wang J L, Huang Y Z, Liu Z 2019 Nat. Commun. 10 3037Google Scholar

    [7]

    Wang X D, Liu C S, Chen Y, Wu G J, Yan X, Huang H, Wang P, Tian B B, Hong Z C, Wang Y T, Sun S, Shen H, Lin T, Hu W D, Tang M H, Zhou P, Wang J L, Sun J L, Meng X J, Chu J H, Li Z 2017 2D Mater. 4 025036Google Scholar

    [8]

    Haleoot R, Paillard C, Kaloni T P, Mehboudi M, Xu B, Bellaiche L, Barrazalopez S 2017 Phys. Rev. Lett. 118 227401Google Scholar

    [9]

    Martin L W, Rappe A M 2017 Nat. Rev. Mater. 2 16087Google Scholar

    [10]

    Catalan G, Lubk A, Vlooswijk A H G, Snoeck E, Magen C, Janssens A, Rispens G, Rijnders G, Blank D H A, Noheda B 2011 Nat. Mater. 10 963Google Scholar

    [11]

    Sai N, Kolpak A M, Rappe A M 2005 Phys. Rev. B 74 059901Google Scholar

    [12]

    Tenne D A, Turner P, Schmidt J D, Biegalski M D, Li Y L, Chen L Q, Soukiassian A, Troliermckinstry S, Schlom D G, Xi X X 2009 Phys. Rev. Lett. 103 177601Google Scholar

    [13]

    Tenne D A, Bruchhausen A, Lanzillottikimura N D, Fainstein A, Katiyar R S, Cantarero A, Soukiassian A, Vaithyanathan V, Haeni J H, Tian W 2006 Science 313 1614Google Scholar

    [14]

    Maksymovych P, Huijben M, Pan M, Jesse S, Balke N, Chu Y H, Chang H J, Borisevich A Y, Baddorf A P, Rijnders G 2012 Phys. Rev. B 85 014119Google Scholar

    [15]

    Seidel J, Martin L W, He Q, Zhan Q, Chu Y H, Rother A, Hawkridge M E, Maksymovych P, Yu P, Gajek M 2009 Nat. Mater. 8 229Google Scholar

    [16]

    Spaldin N A 2004 Science 304 1606Google Scholar

    [17]

    Junquera J,Ghosez P 2003 Nature 422 506Google Scholar

    [18]

    Duan C G, Sabirianov R F, Mei W N, Jaswal S S, Tsymbal E Y 2006 Nano Lett. 6 483Google Scholar

    [19]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [20]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [21]

    Guan Z, Hu H, Shen X W, Xiang P H, Zhong N, Chu J H, Duan C G 2020 Adv. Electron. Mater. 6 1900818Google Scholar

    [22]

    Tang X, Kou L Z 2019 J. Phys. Chem. Lett. 10 6634Google Scholar

    [23]

    丁宁, 董帅 2020 南通大学学报(自然科学版) 19 1Google Scholar

    Ding N, Dong S 2020 Journal of Nantong University (Natural Science Edition) 19 1Google Scholar

    [24]

    Wu M H, Dong S, Yao K L, Liu J M, Zeng X C 2016 Nano Lett. 16 7309Google Scholar

    [25]

    Kan E J, Wu F, Deng K M, Tang W H 2013 Appl. Phys. Lett. 103 193103Google Scholar

    [26]

    Wu M H, Burton J D, Tsymbal E Y, Zeng X C, Jena P 2013 Phys. Rev. B 87 081406Google Scholar

    [27]

    Yang Q, Xiong W, Zhu L, Gao G Y, Wu M H 2017 J. Am. Chem. Soc. 139 11506Google Scholar

    [28]

    Shirodkar S N, Waghmare U V 2014 Phys. Rev. Lett. 112 157601Google Scholar

    [29]

    Yuan S G, Luo X, Chan H L, Xiao C C, Dai Y W, Xie M H, Hao J H 2019 Nat. Commun. 10 1775Google Scholar

    [30]

    Belianinov A, He Q, Dziaugys A, Maksymovych P, Eliseev E A, Borisevich A Y, Morozovska A N, Banys J, Vysochanskii Y, Kalinin S V 2015 Nano Lett. 15 3808Google Scholar

    [31]

    Liu F C, You L, Seyler K L, Li X, Yu P, Lin J H, Wang X W, Zhou J D, Wang H, He H Y, Pantelides S T, Zhou W, Sharma P, Xu X D, Ajayan P M, Wang J L, Liu Z 2016 Nat. Commun. 7 12357Google Scholar

    [32]

    Xu B, Xiang H, Xia Y D, Jiang K, Wan X G, He J, Yin J, Liu Z G 2017 Nanoscale 9 8427Google Scholar

    [33]

    Fei Z Y, Zhao W J, Palomaki T A, Sun B S, Miller M, Zhao Z Y, Yan J Q, Xu X D, Cobden D H 2018 Nature 560 336Google Scholar

    [34]

    Fei R X, Kang W, Yang L 2016 Phys. Rev. Lett. 117 097601Google Scholar

    [35]

    Wu M H, Zeng X C 2016 Nano Lett. 16 3236Google Scholar

    [36]

    Wang H, Qian X F 2017 2D Mater. 4 015042Google Scholar

    [37]

    Chang K, Liu J W, Lin H C, Wang N, Zhao K, Zhang A M, Jin F, Zhong Y, Hu X P, Duan W H, Zhang Q M, Fu L, Xue Q K, Chen X, Ji S H 2016 Science 353 274Google Scholar

    [38]

    Liu C, Wan W H, Ma J, Guo W, Yao Y G 2018 Nanoscale 10 7984Google Scholar

    [39]

    Xiao C C, Wang F, Yang S Y A, Lu Y H, Feng Y P, Zhang S B 2018 Adv. Funct. Mater. 28 1707383Google Scholar

    [40]

    Ai H Q, Song X H, Qi S Y, Li W F, Zhao M W 2019 Nanoscale 11 1103Google Scholar

    [41]

    Tan H X, Li M L, Liu H T, Liu Z R, Li Y C, Duan W H 2019 Phys. Rev. B 99 195434Google Scholar

    [42]

    Ding W J, Zhu J B, Wang Z, Gao Y F, Xiao D, Gu Y, Zhang Z Y, Zhu W G 2017 Nat. Commun. 8 14956Google Scholar

    [43]

    Zhou Y, Wu D, Zhu Y H, Cho Y J, He Q, Yang X, Herrera K, Chu Z D, Han Y, Downer M C, Peng H, Lai K J 2017 Nano Lett. 17 5508Google Scholar

    [44]

    Cui C J, Hu W J, Yan X X, Addiego C, Gao W P, Wang Y, Wang Z, Li L Z, Cheng Y C, Li P, Zhang X X, Alshareef H N, Wu T, Zhu W G, Pan X Q, Li L J 2018 Nano Lett. 18 1253Google Scholar

    [45]

    Choi T, Lee S, Choi Y J, Kiryukhin V, Cheong S W 2009 Science 324 63Google Scholar

    [46]

    Wan S Y, Li Y, Li W, Mao X Y, Zhu W G, Zeng H L 2018 Nanoscale 10 14885Google Scholar

    [47]

    Kohlstedt H, Pertsev N A, Contreras J R, Waser R 2005 Phys. Rev. B 72 125341Google Scholar

    [48]

    Zhuravlev M Y, Sabirianov R F, Jaswal S S, Tsymbal E Y 2005 Phys. Rev. Lett. 94 246802Google Scholar

    [49]

    Shen X W, Fang Y W, Tian B B, Duan C G 2019 ACS Appl. Electron. Mater. 1 1133Google Scholar

    [50]

    Gao Y C, Duan C G, Tang X D, Hu Z G, Yang P X, Zhu Z Q, Chu J H 2013 J. Phys.: Condens. Matter 25 165901Google Scholar

    [51]

    Neto A H C, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [52]

    Rycerz A, Tworzydlo J, Beenakker C W J 2007 Nat. Phys. 3 172Google Scholar

    [53]

    Sanjose P, Prada E, Mccann E, Schomerus H 2009 Phys. Rev. Lett. 102 247204Google Scholar

    [54]

    Tong W Y, Gong S J, Wan X, Duan C G 2016 Nat. Commun. 7 13612Google Scholar

    [55]

    Shen X W, Tong W Y, Gong S J, Duan C G 2017 2D Mater. 5 011001Google Scholar

    [56]

    Hu H, Tong W Y, Shen Y H, Duan C G 2020 J. Mater. Chem. C 8 8098Google Scholar

    [57]

    Datta S, Das B 1990 Appl. Phys. Lett. 56 665Google Scholar

    [58]

    Zhang X W, Liu Q H, Luo J W, Freeman A J, Zunger A 2014 Nat. Phys. 10 387Google Scholar

    [59]

    Bychkov Y A, Rashba É I 1984 JETP Lett. 39 78

    [60]

    Picozzi S 2014 Front. Phys. 2 10Google Scholar

    [61]

    You L, Liu F C, Li H S, Hu Y Z, Zhou S, Chang L, Zhou Y, Fu Q D, Yuan G L, Dong S, Fan H J, Gruverman A, Liu Z, Wang J L 2018 Adv. Mater. 30 e1803249Google Scholar

    [62]

    Hou Y C, Wu C C, Yang D, Ye T, Honavar V G, van Duin A C T, Wang K, Priya S 2020 J. Appl. Phys. 128 060906Google Scholar

    [63]

    Kepenekian M, Robles R, Katan C, Sapori D, Pedesseau L, Even J 2015 ACS Nano 9 11557Google Scholar

    [64]

    Kim M, Im J, Freeman A J, Ihm J, Jin H 2014 PNAS 111 6900Google Scholar

    [65]

    Ai H Q, Ma X K, Shao X F, Li W F, Zhao M W 2019 Phys. Rev. Mater. 3 054407Google Scholar

    [66]

    Katsura H, Nagaosa N, Balatsky A V 2005 Phys. Rev. Lett. 95 057205Google Scholar

    [67]

    Bhattacharjee S, Rahmedov D, Wang D, Iniguez J, Bellaiche L 2014 Phys. Rev. Lett. 112 147601Google Scholar

    [68]

    Xu C S, Chen P, Tan H X, Yang Y R, Xiang H J, Bellaiche L 2020 Phys. Rev. Lett. 125 037203Google Scholar

    [69]

    Cheong S, Mostovoy M 2007 Nat. Mater. 6 13Google Scholar

    [70]

    Dong S, Liu J M, Cheong S W, Ren Z F 2015 Adv. Phys. 64 519Google Scholar

    [71]

    Luo W, Xu K, Xiang H J 2017 Phys. Rev. B 96 235415Google Scholar

    [72]

    Zhang J J, Lin L F, Zhang Y, Wu M H, Yakobson B I, Dong S 2018 J. Am. Chem. Soc. 140 9768Google Scholar

    [73]

    Qi J S, Wang H, Chen X F, Qian X F 2018 Appl. Phys. Lett. 113 043102Google Scholar

    [74]

    Lai Y F, Song Z G, Wan Y, Xue M Z, Wang C S, Ye Y, Dai L, Zhang Z D, Yang W Y, Du H L, Yang J B 2019 Nanoscale 11 5163Google Scholar

    [75]

    Gong C, Kim E M, Wang Y, Lee G, Zhang X 2019 Nat. Commun. 10 2657Google Scholar

  • 图 1  (a) CIPS晶体结构侧视图[31]; (b) 三维层状1 T′WTe2的结构示意图[33]

    Fig. 1.  (a) The side view of CuInP2S6 (CIPS)[31]; (b) structure of three-dimensional 1 T′WTe2[33].

    图 2  (a) 单层第Ⅳ主族单硫属化合物MX铁电相结构俯视图; (b) 两个等价的极性相BB及高对称性非极性相A的侧视图[34]; (c) VOCl2单层结构的俯视图及侧视图[40]

    Fig. 2.  (a) Top view of the structure of monolayer group-IV monochalcogenides; (b) the schematic side views of the two distorted degenerate polar structures (B and B) and the high symmetry nonpolar phase (A)[34]; (c) the top view along the vertical direction and side views of the VOCl2 monolayer[40].

    图 3  (a) 层状In2Se3的三维晶体结构示意图; (b) 沿垂直方向的俯视图; (c)—(h) quintuple layer (QL) In2Se3的几种典型结构的侧视图[42]

    Fig. 3.  (a) Three-dimensional crystal structure of layered In2Se3; (b) top view of the system along the vertical direction; (c)–(h) side views of several representative structures of one quintuple layer (QL) In2Se3[42].

    图 4  (a) 基于α-In2Se3薄层铁电二极管示意图; (b) 器件的光学图像; (c), (d) 可切换的有整流特性的铁电二极管的I-V曲线[46]

    Fig. 4.  (a) Schematic and (b) optical image of the device; (c), (d) I-V curves of the ferroelectric diode with switchable rectifying behavior[46].

    图 5  (a) 二维铁电同质FTJ器件模型示意图; (b) 二维FTJ In∶SnSe/SnSe/Sb∶SnSe结构示意图; (c) 二维同质FTJ In∶SnSe/SnSe/Sb∶SnSe中, 系统总能随铁电位移λ变化的关系图[49]

    Fig. 5.  (a) Schematic diagram of a two-dimensional ferroelectric tunnel junction (2D-FTJ) device based on homostructure; (b) the schematic diagram (shaded regions) of 2D-FTJ In∶SnSe/SnSe/Sb∶SnSe; (c) asymmetric potential energy profile as a function of ferroelectric distortions in the 2D-FTJ In∶SnSe/SnSe/Sb∶SnSe[49].

    图 6  (a) 石墨烯的晶格结构及布里渊区; (b) 蜂窝晶格中的电子能带色散图[51]; (c)—(e) 2H相TMDS单层能谷K+K附近的能带结构示意图: (c)不含SOC效应, (d)含SOC效应, (e)同时存在SOC效应与为正的交换场作用, 即对应谷极化情况[54]

    Fig. 6.  (a) Honeycomb lattice and its Brillouin zone; (b) electronic dispersion in the honeycomb lattice[51]; (c)–(e) the schematic band structures at valleys K+ and $ K_- $ of representative 2H-phase TMD monolayers: (c) without SOC effect, (d) with SOC effect and (e) with SOC effect and a positive exchange field, that is, the valley-polarized case[54].

    图 7  铁电GeSe单层(a) px相和(b) py相的能带结构; (c) px相和(d) py相GeSe单层中, 在$ \widehat{x} $$ \widehat{y} $线偏振光激发下的复介电函数虚部ε2; (e) 基于铁谷GeSe单层提出的电控起偏器工作原理示意图[55]

    Fig. 7.  The band structure of ferroelectric phase GeSe monolayer in (a) px and (b) py state; the imaginary parts of complex dielectric function ε2 excited by linearly x-polarized light and y-polarized light of ferrovalley GeSe monolayer of (c) px and (d) py state; (e) proposed electrically tunable polarizer based on the ferrovalley GeSe monolayer[55].

    图 8  (a), (b) CuInP2S6/MnPS3异质结构图; (c)—(e) 不同铁磁序和铁电序异质结的能带图; (f), (g) 异质结中左旋圆偏振光σ+和右旋圆偏振光σ激发下的复介电函数虚部ε2; (h), (i) CuInP2S6/MnPS3异质结构的电控谷自由度器件[56]

    Fig. 8.  (a), (b) Structure configurations of CuInP2S6/MnPS3 heterostructures; (c)–(e) band structures of CuInP2S6/MnPS3 heterostructures; the imaginary parts of complex dielectric function ε2 for CuInP2S6/MnPS3 heterostructure with (f) downward and (g) upward ferroelectric polarization; electrical switch of valley degree in CuInP2S6/MnPS3 heterostructures in (h) upward ferroelectricity and (i) downward ferroelectricity[56].

    图 9  (a) 考虑SOC作用时, 使用PBE泛函和HSE06泛函计算的单层弱铁电WO2Cl2的能带图; (b) [110] Dresselhaus型自旋分裂能带CBM处的能量分布图, 其中上方图对应“外”分支, 下方图对应“内”分支; (c)不同极化方向的单层WO2Cl2的三种自旋分量Sx, SySzkx, ky平面内的自旋织构分布图, 能量截面位于CBM+0.2 eV处[65]

    Fig. 9.  (a) Electronic band structures of the WFE WO2Cl2 monolayer in the PBE and HSE06 approximations with SOC; (b) DFT energy profiles for the CBM outer (top) and inner (bottom) branches of the [110] Dresselhaus-type spin split bands; (c) out-of-plane and in-plane spin component distributions with different ferroelectric polarizationon the constant energy contours corresponding to a cut at 0.2 eV above the CBM[65].

    图 10  (a) 分别有向上和向下的垂直电偶极矩的In2Se3单层的Cr2Ge2Te6/ In2Se3二维异质结构图; (b) Cr2Ge2Te6/ In2Se3二维异质结构中Cr2Ge2Te6的磁晶各向异性与范德瓦耳斯层间距离的关系图; (c) 接近Cr2Ge2Te6的表面(Se1)和次表面(In1)原子层的自旋状态密度; (d) 由磁邻近效应引起的原子Se1和原子In1自旋磁矩随层间距的变化图[75]

    Fig. 10.  (a) Heterostructure side views with the In2Se3 ferroelectric dipole moment directed upward and downward (Pup and Pdn), respectively; (b) calculated magnetocrystalline anisotropy of Cr2Ge2Te6 in the heterostructure versus the van der Waals interlayer distance; (c) projected spin density of states for the surface (Se1) and subsurface (In1) atomic layers close to Cr2Ge2Te6; (d) interlayer distance dependence of the proximity-induced Se1 and In1 spin moments[75].

    Baidu
  • [1]

    Hoffman J, Pan X, Reiner J W, Walker F J, Han J P, Ahn C H, Ma T P 2010 Adv. Mater. 22 2957Google Scholar

    [2]

    Lu H D, Bark C W, Ojos D E L, Alcala J, Eom C, Catalan G, Gruverman A 2012 Science 336 59Google Scholar

    [3]

    Garcia V, Bibes M 2014 Nat. Commun. 5 4289Google Scholar

    [4]

    Sharma P, Zhang Q, Sando D, Lei C H, Liu Y Y, Li J Y, Nagarajan V, Seidel J 2017 Sci. Adv. 3 e1700512Google Scholar

    [5]

    Wu J B, Chen H Y, Yang N, Cao J, Yan X D, Liu F X, Sun Q B, Ling X, Guo J, Wang H 2020 Nat. Electron. 3 466Google Scholar

    [6]

    Wang X W, Yu P, Lei Z D, Zhu C, Cao X, Liu F C, You L, Zeng Q S, Deng Y, Zhu C, Zhou J D, Fu Q D, Wang J L, Huang Y Z, Liu Z 2019 Nat. Commun. 10 3037Google Scholar

    [7]

    Wang X D, Liu C S, Chen Y, Wu G J, Yan X, Huang H, Wang P, Tian B B, Hong Z C, Wang Y T, Sun S, Shen H, Lin T, Hu W D, Tang M H, Zhou P, Wang J L, Sun J L, Meng X J, Chu J H, Li Z 2017 2D Mater. 4 025036Google Scholar

    [8]

    Haleoot R, Paillard C, Kaloni T P, Mehboudi M, Xu B, Bellaiche L, Barrazalopez S 2017 Phys. Rev. Lett. 118 227401Google Scholar

    [9]

    Martin L W, Rappe A M 2017 Nat. Rev. Mater. 2 16087Google Scholar

    [10]

    Catalan G, Lubk A, Vlooswijk A H G, Snoeck E, Magen C, Janssens A, Rispens G, Rijnders G, Blank D H A, Noheda B 2011 Nat. Mater. 10 963Google Scholar

    [11]

    Sai N, Kolpak A M, Rappe A M 2005 Phys. Rev. B 74 059901Google Scholar

    [12]

    Tenne D A, Turner P, Schmidt J D, Biegalski M D, Li Y L, Chen L Q, Soukiassian A, Troliermckinstry S, Schlom D G, Xi X X 2009 Phys. Rev. Lett. 103 177601Google Scholar

    [13]

    Tenne D A, Bruchhausen A, Lanzillottikimura N D, Fainstein A, Katiyar R S, Cantarero A, Soukiassian A, Vaithyanathan V, Haeni J H, Tian W 2006 Science 313 1614Google Scholar

    [14]

    Maksymovych P, Huijben M, Pan M, Jesse S, Balke N, Chu Y H, Chang H J, Borisevich A Y, Baddorf A P, Rijnders G 2012 Phys. Rev. B 85 014119Google Scholar

    [15]

    Seidel J, Martin L W, He Q, Zhan Q, Chu Y H, Rother A, Hawkridge M E, Maksymovych P, Yu P, Gajek M 2009 Nat. Mater. 8 229Google Scholar

    [16]

    Spaldin N A 2004 Science 304 1606Google Scholar

    [17]

    Junquera J,Ghosez P 2003 Nature 422 506Google Scholar

    [18]

    Duan C G, Sabirianov R F, Mei W N, Jaswal S S, Tsymbal E Y 2006 Nano Lett. 6 483Google Scholar

    [19]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [20]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [21]

    Guan Z, Hu H, Shen X W, Xiang P H, Zhong N, Chu J H, Duan C G 2020 Adv. Electron. Mater. 6 1900818Google Scholar

    [22]

    Tang X, Kou L Z 2019 J. Phys. Chem. Lett. 10 6634Google Scholar

    [23]

    丁宁, 董帅 2020 南通大学学报(自然科学版) 19 1Google Scholar

    Ding N, Dong S 2020 Journal of Nantong University (Natural Science Edition) 19 1Google Scholar

    [24]

    Wu M H, Dong S, Yao K L, Liu J M, Zeng X C 2016 Nano Lett. 16 7309Google Scholar

    [25]

    Kan E J, Wu F, Deng K M, Tang W H 2013 Appl. Phys. Lett. 103 193103Google Scholar

    [26]

    Wu M H, Burton J D, Tsymbal E Y, Zeng X C, Jena P 2013 Phys. Rev. B 87 081406Google Scholar

    [27]

    Yang Q, Xiong W, Zhu L, Gao G Y, Wu M H 2017 J. Am. Chem. Soc. 139 11506Google Scholar

    [28]

    Shirodkar S N, Waghmare U V 2014 Phys. Rev. Lett. 112 157601Google Scholar

    [29]

    Yuan S G, Luo X, Chan H L, Xiao C C, Dai Y W, Xie M H, Hao J H 2019 Nat. Commun. 10 1775Google Scholar

    [30]

    Belianinov A, He Q, Dziaugys A, Maksymovych P, Eliseev E A, Borisevich A Y, Morozovska A N, Banys J, Vysochanskii Y, Kalinin S V 2015 Nano Lett. 15 3808Google Scholar

    [31]

    Liu F C, You L, Seyler K L, Li X, Yu P, Lin J H, Wang X W, Zhou J D, Wang H, He H Y, Pantelides S T, Zhou W, Sharma P, Xu X D, Ajayan P M, Wang J L, Liu Z 2016 Nat. Commun. 7 12357Google Scholar

    [32]

    Xu B, Xiang H, Xia Y D, Jiang K, Wan X G, He J, Yin J, Liu Z G 2017 Nanoscale 9 8427Google Scholar

    [33]

    Fei Z Y, Zhao W J, Palomaki T A, Sun B S, Miller M, Zhao Z Y, Yan J Q, Xu X D, Cobden D H 2018 Nature 560 336Google Scholar

    [34]

    Fei R X, Kang W, Yang L 2016 Phys. Rev. Lett. 117 097601Google Scholar

    [35]

    Wu M H, Zeng X C 2016 Nano Lett. 16 3236Google Scholar

    [36]

    Wang H, Qian X F 2017 2D Mater. 4 015042Google Scholar

    [37]

    Chang K, Liu J W, Lin H C, Wang N, Zhao K, Zhang A M, Jin F, Zhong Y, Hu X P, Duan W H, Zhang Q M, Fu L, Xue Q K, Chen X, Ji S H 2016 Science 353 274Google Scholar

    [38]

    Liu C, Wan W H, Ma J, Guo W, Yao Y G 2018 Nanoscale 10 7984Google Scholar

    [39]

    Xiao C C, Wang F, Yang S Y A, Lu Y H, Feng Y P, Zhang S B 2018 Adv. Funct. Mater. 28 1707383Google Scholar

    [40]

    Ai H Q, Song X H, Qi S Y, Li W F, Zhao M W 2019 Nanoscale 11 1103Google Scholar

    [41]

    Tan H X, Li M L, Liu H T, Liu Z R, Li Y C, Duan W H 2019 Phys. Rev. B 99 195434Google Scholar

    [42]

    Ding W J, Zhu J B, Wang Z, Gao Y F, Xiao D, Gu Y, Zhang Z Y, Zhu W G 2017 Nat. Commun. 8 14956Google Scholar

    [43]

    Zhou Y, Wu D, Zhu Y H, Cho Y J, He Q, Yang X, Herrera K, Chu Z D, Han Y, Downer M C, Peng H, Lai K J 2017 Nano Lett. 17 5508Google Scholar

    [44]

    Cui C J, Hu W J, Yan X X, Addiego C, Gao W P, Wang Y, Wang Z, Li L Z, Cheng Y C, Li P, Zhang X X, Alshareef H N, Wu T, Zhu W G, Pan X Q, Li L J 2018 Nano Lett. 18 1253Google Scholar

    [45]

    Choi T, Lee S, Choi Y J, Kiryukhin V, Cheong S W 2009 Science 324 63Google Scholar

    [46]

    Wan S Y, Li Y, Li W, Mao X Y, Zhu W G, Zeng H L 2018 Nanoscale 10 14885Google Scholar

    [47]

    Kohlstedt H, Pertsev N A, Contreras J R, Waser R 2005 Phys. Rev. B 72 125341Google Scholar

    [48]

    Zhuravlev M Y, Sabirianov R F, Jaswal S S, Tsymbal E Y 2005 Phys. Rev. Lett. 94 246802Google Scholar

    [49]

    Shen X W, Fang Y W, Tian B B, Duan C G 2019 ACS Appl. Electron. Mater. 1 1133Google Scholar

    [50]

    Gao Y C, Duan C G, Tang X D, Hu Z G, Yang P X, Zhu Z Q, Chu J H 2013 J. Phys.: Condens. Matter 25 165901Google Scholar

    [51]

    Neto A H C, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [52]

    Rycerz A, Tworzydlo J, Beenakker C W J 2007 Nat. Phys. 3 172Google Scholar

    [53]

    Sanjose P, Prada E, Mccann E, Schomerus H 2009 Phys. Rev. Lett. 102 247204Google Scholar

    [54]

    Tong W Y, Gong S J, Wan X, Duan C G 2016 Nat. Commun. 7 13612Google Scholar

    [55]

    Shen X W, Tong W Y, Gong S J, Duan C G 2017 2D Mater. 5 011001Google Scholar

    [56]

    Hu H, Tong W Y, Shen Y H, Duan C G 2020 J. Mater. Chem. C 8 8098Google Scholar

    [57]

    Datta S, Das B 1990 Appl. Phys. Lett. 56 665Google Scholar

    [58]

    Zhang X W, Liu Q H, Luo J W, Freeman A J, Zunger A 2014 Nat. Phys. 10 387Google Scholar

    [59]

    Bychkov Y A, Rashba É I 1984 JETP Lett. 39 78

    [60]

    Picozzi S 2014 Front. Phys. 2 10Google Scholar

    [61]

    You L, Liu F C, Li H S, Hu Y Z, Zhou S, Chang L, Zhou Y, Fu Q D, Yuan G L, Dong S, Fan H J, Gruverman A, Liu Z, Wang J L 2018 Adv. Mater. 30 e1803249Google Scholar

    [62]

    Hou Y C, Wu C C, Yang D, Ye T, Honavar V G, van Duin A C T, Wang K, Priya S 2020 J. Appl. Phys. 128 060906Google Scholar

    [63]

    Kepenekian M, Robles R, Katan C, Sapori D, Pedesseau L, Even J 2015 ACS Nano 9 11557Google Scholar

    [64]

    Kim M, Im J, Freeman A J, Ihm J, Jin H 2014 PNAS 111 6900Google Scholar

    [65]

    Ai H Q, Ma X K, Shao X F, Li W F, Zhao M W 2019 Phys. Rev. Mater. 3 054407Google Scholar

    [66]

    Katsura H, Nagaosa N, Balatsky A V 2005 Phys. Rev. Lett. 95 057205Google Scholar

    [67]

    Bhattacharjee S, Rahmedov D, Wang D, Iniguez J, Bellaiche L 2014 Phys. Rev. Lett. 112 147601Google Scholar

    [68]

    Xu C S, Chen P, Tan H X, Yang Y R, Xiang H J, Bellaiche L 2020 Phys. Rev. Lett. 125 037203Google Scholar

    [69]

    Cheong S, Mostovoy M 2007 Nat. Mater. 6 13Google Scholar

    [70]

    Dong S, Liu J M, Cheong S W, Ren Z F 2015 Adv. Phys. 64 519Google Scholar

    [71]

    Luo W, Xu K, Xiang H J 2017 Phys. Rev. B 96 235415Google Scholar

    [72]

    Zhang J J, Lin L F, Zhang Y, Wu M H, Yakobson B I, Dong S 2018 J. Am. Chem. Soc. 140 9768Google Scholar

    [73]

    Qi J S, Wang H, Chen X F, Qian X F 2018 Appl. Phys. Lett. 113 043102Google Scholar

    [74]

    Lai Y F, Song Z G, Wan Y, Xue M Z, Wang C S, Ye Y, Dai L, Zhang Z D, Yang W Y, Du H L, Yang J B 2019 Nanoscale 11 5163Google Scholar

    [75]

    Gong C, Kim E M, Wang Y, Lee G, Zhang X 2019 Nat. Commun. 10 2657Google Scholar

  • [1] 张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清. 基于机器学习和第一性原理计算的Janus材料的预测.  , 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [2] 史晓红, 侯滨朋, 李祗烁, 陈京金, 师小文, 朱梓忠. 锂离子电池富锂锰基三元材料中氧空位簇的形成: 第一原理计算.  , 2023, 72(7): 078201. doi: 10.7498/aps.72.20222300
    [3] 金鑫, 陶蕾, 张余洋, 潘金波, 杜世萱. 几种范德瓦耳斯铁电材料中新奇物性的研究进展.  , 2022, 71(12): 127305. doi: 10.7498/aps.71.20220349
    [4] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理.  , 2022, 71(3): 036801. doi: 10.7498/aps.71.20211631
    [5] 王志青, 姚晓萍, 沈杰, 周静, 陈文, 吴智. 锆钛酸铅薄膜的铁电疲劳微观机理及其耐疲劳性增强.  , 2021, 70(14): 146302. doi: 10.7498/aps.70.20202196
    [6] 梁婷, 王阳阳, 刘国宏, 符汪洋, 王怀璋, 陈静飞. V掺杂二维MoS2体系气体吸附性能的第一性原理研究.  , 2021, 70(8): 080701. doi: 10.7498/aps.70.20202043
    [7] 刘子媛, 潘金波, 张余洋, 杜世萱. 原子尺度构建二维材料的第一性原理计算研究.  , 2021, 70(2): 027301. doi: 10.7498/aps.70.20201636
    [8] 王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣. 二维材料XTe2 (X = Pd, Pt)热电性能的第一性原理计算.  , 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [9] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理研究.  , 2021, (): . doi: 10.7498/aps.70.20211631
    [10] 闫小童, 侯育花, 郑寿红, 黄有林, 陶小马. Ga, Ge, As掺杂对锂离子电池正极材料Li2CoSiO4的电化学特性和电子结构影响的第一性原理研究.  , 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [11] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究.  , 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [12] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析.  , 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [13] 张薇, 陈凯彬, 陈震东. Cr二维单层薄片中Jahn-Teller效应的第一性原理研究.  , 2018, 67(23): 237301. doi: 10.7498/aps.67.20181669
    [14] 杨明宇, 杨倩, 张勃, 张旭, 蔡颂, 薛玉龙, 周铁戈. 5d过渡金属原子掺杂六方氮化铝单层的磁性及自旋轨道耦合效应:可能存在的二维长程磁有序.  , 2017, 66(6): 063102. doi: 10.7498/aps.66.063102
    [15] 叶红军, 王大威, 姜志军, 成晟, 魏晓勇. 钙钛矿结构SnTiO3铁电相变的第一性原理研究.  , 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [16] 高淼, 孔鑫, 卢仲毅, 向涛. Li2C2中电声耦合及超导电性的第一性原理计算研究.  , 2015, 64(21): 214701. doi: 10.7498/aps.64.214701
    [17] 刘越颖, 周铁戈, 路远, 左旭. 第一主族元素(Li,Na,K)和第二主族元素(Be,Mg,Ca) 掺杂二维六方氮化硼单层的第一性原理计算研究.  , 2012, 61(23): 236301. doi: 10.7498/aps.61.236301
    [18] 李雪梅, 韩会磊, 何光普. LiNH2 的晶格动力学、介电性质和热力学性质第一性原理研究.  , 2011, 60(8): 087104. doi: 10.7498/aps.60.087104
    [19] 张学军, 高攀, 柳清菊. 氮铁共掺锐钛矿相TiO2电子结构和光学性质的第一性原理研究.  , 2010, 59(7): 4930-4938. doi: 10.7498/aps.59.4930
    [20] 宋庆功, 姜恩永, 裴海林, 康建海, 郭 英. 插层化合物LixTiS2中Li离子-空位二维有序结构稳定性的第一性原理研究.  , 2007, 56(8): 4817-4822. doi: 10.7498/aps.56.4817
计量
  • 文章访问数:  14962
  • PDF下载量:  1387
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-30
  • 修回日期:  2020-09-14
  • 上网日期:  2020-10-30
  • 刊出日期:  2020-11-05

/

返回文章
返回
Baidu
map