搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

5d过渡金属原子掺杂六方氮化铝单层的磁性及自旋轨道耦合效应:可能存在的二维长程磁有序

杨明宇 杨倩 张勃 张旭 蔡颂 薛玉龙 周铁戈

引用本文:
Citation:

5d过渡金属原子掺杂六方氮化铝单层的磁性及自旋轨道耦合效应:可能存在的二维长程磁有序

杨明宇, 杨倩, 张勃, 张旭, 蔡颂, 薛玉龙, 周铁戈

Electronic structures, magnetic properties and spin-orbital coupling effects of aluminum nitride monolayers doped by 5d transition metal atoms: possible two-dimensional long-range magnetic orders

Yang Ming-Yu, Yang Qian, Zhang Bo, Zhang Xu, Cai Song, Xue Yu-Long, Zhou Tie-Ge
PDF
导出引用
  • 采用基于密度泛函理论的第一性原理计算方法,研究了5d过渡金属原子(Hf,Ta,W,Re,Os,Ir,Pt,Au和Hg)取代六方氮化铝单层中的Al原子的几何结构、电子结构、磁性性质、铁磁态与反铁磁态能量差(EFM-EAFM)以及自旋轨道耦合效应导致的磁各向异性.研究发现Hg掺杂的体系中,5d金属原子和最邻近的N原子的键长最大,平均值为2.093,之后依次是Au,Hf,Pt,Ta和Ir.态密度结果显示掺杂体系的禁带中出现明显的杂质能级,给出了掺杂体系的总磁矩以及自旋密度的分布.对于EFM-EAFM,Hf,Re,Pt和Au四种原子的掺杂在48超胞中到达最大值,分别为-187.2563,286.2320,-48.0637和-61.7889 meV.磁各向异性结果中,Re掺杂的磁各向异性最大,达到11.622 meV.结合以上结果,我们预测5d过渡金属原子掺杂六方氮化铝单层可能存在二维长程磁有序.
    The magnetism of two-dimensional material is an important research topic. In particular, the long-range magnetic order of two-dimensional material is of great significance in theoretical research and practical application. According to the Mermin-Wagner theory, the isotropic Heisenberg model in a two-dimensional system cannot produce long-range magnetic orders at non-vanishing temperatures. Considering the existence of strong magnetic anisotropy, possible two-dimensional long-range magnetic orders may exist in 5d atom doped two-dimensional aluminum nitride (AlN) monolayer. This research is performed by first-principles calculations based on the density functional theory. Geometries, electronic structures, magnetic properties, and magnetic anisotropy energies from spin-orbital coupling effects in AlN monolayers doped by 5d transition metal atoms (Hf, Ta, W, Re, Os, Ir, Pt, Au, and Hg) are calculated. Four kinds of supercells are used in the calculation, i.e, 22, 33, 44, and 55, with one aluminum atom substituted by one 5d atom. Projection augmented wave method is used to describe the interaction between the valence electrons and the ions. The plane wave is used to expand the wave function of the valence electron. For an optimized geometry, the bond length between the 5d metal atom and the nearest N atom is the largest in Hg-doped supercells, which is 2.093 , followed by the Au, Hf, Pt, Ta, and Ir according to the order of bond length magnitude. For the densities of states (DOSs), obvious impurity energy levels appear in the forbidden bands. For all the supercells, spin-up and spin-down DOSs of Ta and Ir doped systems are symmetric, indicating non-magnetic states. DOSs of Hf, W, Re, and Os doped systems are asymmetric, indicating magnetic states. For Pt, Au, and Hg, DOSs are symmetric in 22 supercells, but asymmetric in the 33, 44, and 55 supercells. Total magnetic moments and the spin densities are also given. In 55 supercells, they are 1.00, 0.00, 0.39, 1.99, 1.17, 0.00, 1.00, 2.00, and 1.00 for Hf, Ta, W, Re, Os, Ir, Pt, Au, and Hg, respectively. The magnetic moment is mainly concentrated in the vicinity of the 5d atoms. The energy differences between ferromagnetic and antiferromagnetic states are calculated. For Hf, Re, Pt and Au systems, the differences in 48 supercells reach the maximum values of -187.2563 meV, 286.2320 meV, -48.0637 meV and -61.7889 meV, respectively. The results indicate that there is a strong interaction between the magnetic centers. Magnetic anisotropy energy originating from spin-orbital effect is calculated in the 44 supercells. For the Re system, it is the highest, reaching 11.622 meV. For W, Os, and Au, the values are larger than 1 meV, showing strong magnetic anisotropies. The magnetic anisotropy can produce a spin wave energy gap, resulting in long-range magnetic orders. Based on the results above, it is predicted that with appropriate 5d atoms and suitable doping concentration, two-dimensional long-range magnetic orders may exist in 5d transition metal atom doped AlN monolayers.
      通信作者: 张勃, zhangbo2010@nankai.edu.cn
    • 基金项目: 天津市自然科学基金(批准号:13JCQNJC00500)资助的课题.
      Corresponding author: Zhang Bo, zhangbo2010@nankai.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Tianjin, China (Grant No. 13JCQNJC00500).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [2]

    Cahangirov S, Topsakal M, Aktrk E, Sahin H, Ciraci S 2009 Phys. Rev. Lett. 102 236804

    [3]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699

    [4]

    Fleischer J W, Segev M, Efremidis N K, Demetrios N 2003 Nature 422 147

    [5]

    Lu W, Lieber C M 2007 Nat. Mater. 6 841

    [6]

    Zhirnov V V, Cavin R K 2008 Nat. Nanotechnol. 3 77

    [7]

    Xu X D, Yao W, Xiao D, Heinz T F 2014 Nat. Phys. 10 343

    [8]

    Awschalom D D, Flatt M E 2007 Nat. Phys. 3 153

    [9]

    Prinz G A 1998 Science 282 1660

    [10]

    Huang B, Xiang H J, Yu J, Wei S H 2012 Phys. Rev. Lett. 108 206802

    [11]

    Cocchi C, Prezzi D, Calzolari A, Molinari E 2010 J. Chem. Phys. 133 124703

    [12]

    Chan K T, Lee H, Cohen M L 2011 Phys. Rev. B 83 035405

    [13]

    Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133

    [14]

    Luo H M, Wang D H, He J B, Lu Y F 2005 J. Phys. Chem. B 109 1919

    [15]

    Xu C, Gao J, Gao C Y 2006 Acta Phys. Sin. 55 4221 (in Chinese) [徐灿, 曹娟, 高晨阳 2006 55 4221]

    [16]

    Kaplan B, Kaplan R 2014 J. Magn. Magn. Mater. 356 95

    [17]

    Ou X, Wu H 2014 Sci. Rep. 4 4609

    [18]

    Liu C C, Feng W X, Yao Y G 2011 Phys. Rev. Lett. 107 076802

    [19]

    Laguna-Marco M A, Haskel D, Souza-Neto N, Lang J C, Krishnamurthy V V, Chikara S, Cao G, van Veenendaal M 2010 Phys. Rev. Lett. 105 216407

    [20]

    Zhang Z F, Zhou T G, Zhao H Y, Wei X L 2014 Chin. Phys. B 23 016801

    [21]

    Shitade A, Katsura H, Kune J, Qi X L, Zhang S C, Nagaosa N 2009 Phys. Rev. Lett. 102 256403

    [22]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801

    [23]

    He W Y, He L 2013 Phys. Rev. B 88 085411

    [24]

    Zhang H B, Lazo C, Blgel S, Heinze S, Mokrousov Y 2012 Phys. Rev. Lett. 108 056802

    [25]

    Hu J, Alicea J, Wu R Q, Franz M 2012 Phys. Rev. Lett. 109 266801

    [26]

    Xiao Z L, Shi L B 2011 Acta Phys. Sin. 60 027502 (in Chinese) [肖振林, 史力斌 2011 60 027502]

    [27]

    Sebastian K C, Chawda M, Jonny L, Bodas D 2010 Mater. Lett. 64 2269

    [28]

    Chen S, Wu Q Y, Chen Z G, Xu G G, Huang Z G 2009 Acta Phys. Sin. 58 2011 (in Chinese) [陈珊, 吴青云, 陈志高, 许桂贵, 黄志高 2009 58 2011]

    [29]

    Gonze X, Beuken J M, Caracas R, Detraux F, Fuchs M, Rignanese G M, Sindic L, Verstraete M, Zerah G, Jollet F, Torrent M, Roy A, Mikami M, Ghosez P, Raty J Y, Allan D C 2002 Comput. Mater. Sci. 25 478

    [30]

    Gonze X, Amadon B, Anglade P M, Beuken J M, Bottin F, Boulanger P, Bruneval F, Caliste D, Caracas R, Ct M, Deutsch T, Genovese L, Ghosez P, Giantomassi M, Goedecker S, Hamann D R, Hermet P, Jollet F, Jomard G, Leroux S, Mancini M, Mazevet S, Oliveira M J T, Onida G, Pouillon Y, Rangel T, Rignanese G M, Sangalli D, Shaltaf R, Torrent M, Verstraete M J, Zerah G, Zwanziger J W 2009 Comput. Mater. Commun. 180 2582

    [31]

    Torrent M, Jollet F, Bottin F, Zrah G, Gonze X 2008 Comput. Mater. Sci. 42 337

    [32]

    Perdew J P, Yue W 1986 Phys. Rev. B 33 8800

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [2]

    Cahangirov S, Topsakal M, Aktrk E, Sahin H, Ciraci S 2009 Phys. Rev. Lett. 102 236804

    [3]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699

    [4]

    Fleischer J W, Segev M, Efremidis N K, Demetrios N 2003 Nature 422 147

    [5]

    Lu W, Lieber C M 2007 Nat. Mater. 6 841

    [6]

    Zhirnov V V, Cavin R K 2008 Nat. Nanotechnol. 3 77

    [7]

    Xu X D, Yao W, Xiao D, Heinz T F 2014 Nat. Phys. 10 343

    [8]

    Awschalom D D, Flatt M E 2007 Nat. Phys. 3 153

    [9]

    Prinz G A 1998 Science 282 1660

    [10]

    Huang B, Xiang H J, Yu J, Wei S H 2012 Phys. Rev. Lett. 108 206802

    [11]

    Cocchi C, Prezzi D, Calzolari A, Molinari E 2010 J. Chem. Phys. 133 124703

    [12]

    Chan K T, Lee H, Cohen M L 2011 Phys. Rev. B 83 035405

    [13]

    Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133

    [14]

    Luo H M, Wang D H, He J B, Lu Y F 2005 J. Phys. Chem. B 109 1919

    [15]

    Xu C, Gao J, Gao C Y 2006 Acta Phys. Sin. 55 4221 (in Chinese) [徐灿, 曹娟, 高晨阳 2006 55 4221]

    [16]

    Kaplan B, Kaplan R 2014 J. Magn. Magn. Mater. 356 95

    [17]

    Ou X, Wu H 2014 Sci. Rep. 4 4609

    [18]

    Liu C C, Feng W X, Yao Y G 2011 Phys. Rev. Lett. 107 076802

    [19]

    Laguna-Marco M A, Haskel D, Souza-Neto N, Lang J C, Krishnamurthy V V, Chikara S, Cao G, van Veenendaal M 2010 Phys. Rev. Lett. 105 216407

    [20]

    Zhang Z F, Zhou T G, Zhao H Y, Wei X L 2014 Chin. Phys. B 23 016801

    [21]

    Shitade A, Katsura H, Kune J, Qi X L, Zhang S C, Nagaosa N 2009 Phys. Rev. Lett. 102 256403

    [22]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801

    [23]

    He W Y, He L 2013 Phys. Rev. B 88 085411

    [24]

    Zhang H B, Lazo C, Blgel S, Heinze S, Mokrousov Y 2012 Phys. Rev. Lett. 108 056802

    [25]

    Hu J, Alicea J, Wu R Q, Franz M 2012 Phys. Rev. Lett. 109 266801

    [26]

    Xiao Z L, Shi L B 2011 Acta Phys. Sin. 60 027502 (in Chinese) [肖振林, 史力斌 2011 60 027502]

    [27]

    Sebastian K C, Chawda M, Jonny L, Bodas D 2010 Mater. Lett. 64 2269

    [28]

    Chen S, Wu Q Y, Chen Z G, Xu G G, Huang Z G 2009 Acta Phys. Sin. 58 2011 (in Chinese) [陈珊, 吴青云, 陈志高, 许桂贵, 黄志高 2009 58 2011]

    [29]

    Gonze X, Beuken J M, Caracas R, Detraux F, Fuchs M, Rignanese G M, Sindic L, Verstraete M, Zerah G, Jollet F, Torrent M, Roy A, Mikami M, Ghosez P, Raty J Y, Allan D C 2002 Comput. Mater. Sci. 25 478

    [30]

    Gonze X, Amadon B, Anglade P M, Beuken J M, Bottin F, Boulanger P, Bruneval F, Caliste D, Caracas R, Ct M, Deutsch T, Genovese L, Ghosez P, Giantomassi M, Goedecker S, Hamann D R, Hermet P, Jollet F, Jomard G, Leroux S, Mancini M, Mazevet S, Oliveira M J T, Onida G, Pouillon Y, Rangel T, Rignanese G M, Sangalli D, Shaltaf R, Torrent M, Verstraete M J, Zerah G, Zwanziger J W 2009 Comput. Mater. Commun. 180 2582

    [31]

    Torrent M, Jollet F, Bottin F, Zrah G, Gonze X 2008 Comput. Mater. Sci. 42 337

    [32]

    Perdew J P, Yue W 1986 Phys. Rev. B 33 8800

  • [1] 张磊, 陈起航, 曹硕, 钱萍. 基于第一性原理计算单层IrSCl和IrSI的载流子迁移率.  , 2024, 73(21): 217201. doi: 10.7498/aps.73.20241044
    [2] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理.  , 2022, 71(3): 036801. doi: 10.7498/aps.71.20211631
    [3] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理研究.  , 2021, (): . doi: 10.7498/aps.70.20211631
    [4] 罗强, 杨恒, 郭平, 赵建飞. N型甲烷水合物结构和电子性质的密度泛函理论计算.  , 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [5] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析.  , 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [6] 杜建宾, 张倩, 李奇峰, 唐延林. 基于密度泛函理论的C24H38O4分子外场效应研究.  , 2018, 67(6): 063102. doi: 10.7498/aps.67.20172022
    [7] 张薇, 陈凯彬, 陈震东. Cr二维单层薄片中Jahn-Teller效应的第一性原理研究.  , 2018, 67(23): 237301. doi: 10.7498/aps.67.20181669
    [8] 王雅静, 李桂霞, 王治华, 宫立基, 王秀芳. Imogolite类纳米管直径单分散性密度泛函理论研究.  , 2016, 65(4): 048101. doi: 10.7498/aps.65.048101
    [9] 余本海, 陈东. 用密度泛函理论研究氮化硅新相的电子结构、光学性质和相变.  , 2014, 63(4): 047101. doi: 10.7498/aps.63.047101
    [10] 张召富, 耿朝晖, 王鹏, 胡耀乔, 郑宇斐, 周铁戈. 5d过渡金属原子掺杂氮化硼纳米管的第一性原理计算.  , 2013, 62(24): 246301. doi: 10.7498/aps.62.246301
    [11] 张召富, 周铁戈, 左旭. 氧、硫掺杂六方氮化硼单层的第一性原理计算.  , 2013, 62(8): 083102. doi: 10.7498/aps.62.083102
    [12] 张宝龙, 王东红, 杨致, 刘瑞萍, 李秀燕. 合金团簇(FeCr)n中的非共线磁序和自旋轨道耦合效应.  , 2013, 62(14): 143601. doi: 10.7498/aps.62.143601
    [13] 刘越颖, 周铁戈, 路远, 左旭. 第一主族元素(Li,Na,K)和第二主族元素(Be,Mg,Ca) 掺杂二维六方氮化硼单层的第一性原理计算研究.  , 2012, 61(23): 236301. doi: 10.7498/aps.61.236301
    [14] 于冬琪, 张朝晖. 带状碳单层与石墨基底之间相互作用的第一性原理计算.  , 2011, 60(3): 036104. doi: 10.7498/aps.60.036104
    [15] 李雪梅, 韩会磊, 何光普. LiNH2 的晶格动力学、介电性质和热力学性质第一性原理研究.  , 2011, 60(8): 087104. doi: 10.7498/aps.60.087104
    [16] 吕泉, 黄伟其, 王晓允, 孟祥翔. Si(111)面上氮原子薄膜的电子态密度第一性原理计算及分析.  , 2010, 59(11): 7880-7884. doi: 10.7498/aps.59.7880
    [17] 明 星, 范厚刚, 胡 方, 王春忠, 孟 醒, 黄祖飞, 陈 岗. 自旋-Peierls化合物GeCuO3电子结构的第一性原理研究.  , 2008, 57(4): 2368-2373. doi: 10.7498/aps.57.2368
    [18] 孙 博, 刘绍军, 段素青, 祝文军. Fe的结构与物性及其压力效应的第一性原理计算.  , 2007, 56(3): 1598-1602. doi: 10.7498/aps.56.1598
    [19] 宋庆功, 姜恩永, 裴海林, 康建海, 郭 英. 插层化合物LixTiS2中Li离子-空位二维有序结构稳定性的第一性原理研究.  , 2007, 56(8): 4817-4822. doi: 10.7498/aps.56.4817
    [20] 叶贞成, 蔡 钧, 张书令, 刘洪来, 胡 英. 方阱链流体在固液界面分布的密度泛函理论研究.  , 2005, 54(9): 4044-4052. doi: 10.7498/aps.54.4044
计量
  • 文章访问数:  6467
  • PDF下载量:  271
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-27
  • 修回日期:  2016-12-28
  • 刊出日期:  2017-03-05

/

返回文章
返回
Baidu
map