搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

129Xeq+离子入射Cu靶表面激发的近红外光谱线和X射线谱

张小安 梅策香 张颖 梁昌慧 周贤明 曾利霞 李耀宗 柳钰 向前兰 孟惠 王益军

引用本文:
Citation:

129Xeq+离子入射Cu靶表面激发的近红外光谱线和X射线谱

张小安, 梅策香, 张颖, 梁昌慧, 周贤明, 曾利霞, 李耀宗, 柳钰, 向前兰, 孟惠, 王益军

129Xeq+ induced near-infrared light and X-ray emission at Cu surface

Zhang Xiao-An, Mei Ce-Xiang, Zhang Ying, Liang Chang-Hui, Zhou Xian-Ming, Zeng Li-Xia, Li Yao-Zong, Liu Yu, Xiang Qian-Lan, Meng Hui, Wang Yi-Jun
PDF
HTML
导出引用
  • 利用动能一定(1360 keV)的高电荷态129Xeq+ (q = 21, 23, 25, 27)离子束和动能为4 MeV的129Xe20+离子束分别入射洁净的Cu靶表面, 流强为nA量级, 离子在飞秒时间尺度内俘获靶电子完成中性化, 能量沉积在靶表面使靶原子离化和激发, 发生复杂组态之间的跃迁. 测量到了炮弹离子中性化后的Xe原子退激跃迁辐射的近红外光谱线和相互作用过程中激发和离化的靶原子退激辐射的近红外光谱线, 其中包括偶极禁戒跃迁(磁偶极和电四极跃迁)和Cu22+的磁偶极退激辐射跃迁的近红外光谱线. 4 MeV的129Xe20+离子入射Cu靶表面, 测量到Cu22+的软X射线、Cu原子的L1 edge和Lβ3跃迁辐射的X射线以及高电荷态129Xe20+中性化后Xe原子退激辐射的Lη和Lβ3 X射线. 结果表明, 低速高电荷态129Xeq+离子入射金属表面中性化过程中, 离子中性化退激和激发离化靶原子辐射红外光谱线, 近红外谱线的单离子荧光产额增加的趋势与入射离子的势能增加趋势相同. Xe原子的特征L X射线是炮弹离子进入表面下形成的第二代空心原子发射的.
    During the interaction of highly charged ions with solid target in the energy region near the Bohr velocity, the potential energy of the projectiles will be deposited on a nanometer-scale target surface within the time on the order of femtoseconds. That will lead the target atoms to be ionized into ions and the ions to be excited, resulting in the multiple ionization states and the complex configuration of energy levels. The de-excitation radiations of these levels cover the radiations from near-infrared spectral line to X-ray. Investigation of these spectral lines is significant for investigating the mechanism of such an interaction, diagnosing plasma and studying astrophysics. The experimental results show that the near-infrared spectral lines and X-ray spectra are produced by the 129Xeq+ (q = 21, 23, 25, 27) with kinetic energy of 1360 keV and 129Xe20+ with kinetic energy of 4 MeV impacting on the Cu surface, separately. The experiment is carried out in the National Laboratory of Heavy Ion Research Facility in Lanzhou, HIRFL. The beam intensity is on the order of nA. The highly charged ions capture the electrons of the Cu target and thus being neutralized in a femtosecond time. The energy of the highly charged ions is deposited on the target surface, and the target atoms are excited or ionized, resulting in the transition between complex configurations, such as the dipole forbidden transition (magnetic dipole and quadrupole transition) and magnetic dipole transition of the Cu22+. The infrared spectral lines of the atoms and ions from deexcitation radiation are measured. With the 4 MeV 129Xe20+ ions impacting on solid Cu surfsce, the X-rays are measured, such as, the magnetic dipole deexcitation radiation transition of Cu22+, the X-rays of the L1 edge transition and Lβ3 of the Cu I, Lη and Lβ3 X-rays of the Xe ions. The results show that during the neutrilization of highly charged Xe ions with lower energy above the Cu surface, the infrared lines are mainly from the deexcitation of the incident ions and the ionized or excited target atoms. The increasing trend of the the single ion fluorescence yield of the infrared spectral line is the same as that of the potential energy of the projectile. The characteristic L X-rays of the Xe atom are emitted by the second generation of hollow atoms formed below the surface.
      通信作者: 张小安, zhangxiaoan2000@126.com
    • 基金项目: 国家自然科学基金(批准号: 11605147, 11075135)和陕西省科技厅自然科学基础研究计划(批准号: 2020JM-624)资助的课题
      Corresponding author: Zhang Xiao-An, zhangxiaoan2000@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11605147, 11075135) and the Natural Science Basic Research Plan in Shaanxi Province, China (Grant No. 2020JM-624)
    [1]

    Lemell C, Stöck J, Burgdörfer J, Betz G, Winter H P, Aumayr F 1998 Phys. Rev. Lett. 81 1965Google Scholar

    [2]

    Woolsey N C, Hammel B A, Keane C J, Back C A, Moreno J C, Nash J K, Calisti A, Mosse C, R. Stamm, Talin B, Asfaw A, Klein L S, Lee R W 1998 Phys. Rev. E 57 4650Google Scholar

    [3]

    Kim K Y, Taylor A J, Glownia J H, Rodriguez G 2008 Nat. Photonics 2 605Google Scholar

    [4]

    Krasheninnikov A V, Nordlund K 2010 J. Appl. Phys. 107 071301Google Scholar

    [5]

    Lake R E, Pomeroy J M, Grube H, Sosolik C E 2011 Phys. Rev. Lett. 107 063202Google Scholar

    [6]

    段斌, 吴泽清, 王建国 2009 中国科学 G 39 43Google Scholar

    Duan B, Wu Z Q, Wang J G 2009 Sci. China G 39 43Google Scholar

    [7]

    段斌, 吴泽清, 王建国 2009 中国科学 G 39 241Google Scholar

    Duan B, Wu Z Q, Wang J G 2009 Sci. China G 39 241Google Scholar

    [8]

    Gruber E, Wilhelm R A, Pétuya R, Smejkal V, Kozubek R, Hierzenberger A, Bayer B C, Aldazabal I, Kazansky A K, Libisch F, Krasheninnikov A V, Schleberger M, Facsko S, Borisov A G, Arnau A, Aumayr F 2016 Nat. Commun. 7 13948Google Scholar

    [9]

    Ferguson B, Zhang X C 2002 Nat. Mater. 1 26Google Scholar

    [10]

    Hagstrum H D 1954 Phys. Rev. 96 336Google Scholar

    [11]

    Datz S 1983 Phys. Scr. T 3 79Google Scholar

    [12]

    Briand J P, de Billy L, Charles P, Essabaa S, Briand P, Desclaux J P, Geller R, Bliman S, Ristori C 1990 Phys. Rev. Lett. 65 1259Google Scholar

    [13]

    Burgdörfer J, Lerner P, Meyer F W 1991 Phys. Rev. A 44 5674Google Scholar

    [14]

    Köhrbrück R, Sommer K, Biersack J P, Neuhaus B J, Schippers S, Roncin P, Lecler D, Fremont F, Stolterfoht N 1992 Phys. Rev. A 45 4653Google Scholar

    [15]

    Beiersdorfer P, Olson R E, Brown G V, Chen H, Harris C L, Neill P A, Schweikhard L, Utter S B, Widmann K 2000 Phys. Rev. Lett. 85 5090Google Scholar

    [16]

    Morishita Y, Hutton R, Torii H A, Komaki K, Brage T, Ando K, Ishii K, Kanai Y, Masuda H, Sekiguchi M, Rosmej F B, Yamazaki Y 2004 Phys. Rev. A 70 012902Google Scholar

    [17]

    赵永涛, 张小安, 李福利, 肖国青, 詹文龙, 杨治虎 2003 52 2768Google Scholar

    Zhao Y T, Zhang X A, Li F L, Xiao G Q, Zhan WL, Yang Z H 2003 Acta Phys. Sin. 52 2768Google Scholar

    [18]

    Sporn M, Libiseller G, Neidhart T, Schmid M, Aumayr F, Winter H P, Varga P, 1997 Phys. Rev. Lett. 79 945Google Scholar

    [19]

    张小安, 杨治虎, 王党朝, 梅策香, 牛超英, 王伟, 戴斌, 肖国青 2009 58 6920Google Scholar

    Zhang X A, Yang Z H, Wang D C, Mei C X, Niu C Y, Wang W, Dai B, Xiao G Q 2009 Acta Phys. Sin. 58 6920Google Scholar

    [20]

    Wilhelm R A, Gruber E, Schwestka J, Kozubek Roland, Madeira T I, Marques J P, Kobus J, Krasheninnikov AV, Schleberger M, Aumayr F 2017 Phys. Rev. Lett. 119 103401Google Scholar

    [21]

    Hurricane O A, Callahan D A, Casey D T, Celliers P M, Cerjan C, Dewald E L, Dittrich T R, Döppner T, Hinkel D E, Berzak Hopkins L F, Kline J L, Le Pape S, Ma 1T, MacPhee A G, Milovich J L, Pak A, Park H S, Patel P K, Remington B A, Salmonson J D, Springer P T, Tommasini R 2014 Nature 506 343Google Scholar

    [22]

    Hollmann E M, Parks P B, Shiraki D, Alexander N, Eidietis N W, Lasnier C J, Moyer R A 2019 Phys. Rev. Lett. 122 065001Google Scholar

    [23]

    Dasgupta A, Clark R W, Ouart N D, Giuliani J L 2014 Phys. Scr. 89 14008Google Scholar

    [24]

    Träbert E, Grieser M, Hoffmann J, Krantz C, Repnow R, Wolf A 2012 Phys. Rev. A 85 042508Google Scholar

    [25]

    Dasgupta A, Clark R W, Ouart N D, Giuliani J L, Thornhill W, Davis J, Jones B, Ampleford D J, Hansen S B, Coverdale CA 2012 High Energy Density Phys. 8 284Google Scholar

    [26]

    Kawaguchi K, Sanechika N, Nishimura Y, Fujimori R, Oka T N, Hirahara Y, Jaman A I, Civiš S 2008 Chem. Phys. Lett. 463 38Google Scholar

    [27]

    Hinnov E, Suckewer S, Cohen S, Sato K 1982 Phys. Rev. A 25 2293Google Scholar

    [28]

    李家明, 赵中新 1981 30 105Google Scholar

    Li J M, Zhao Z X 1981 Acta Phys. Sin. 30 105Google Scholar

    [29]

    Han X Y, Gao X, Zeng D L, Jin R, Yan J, Li J M 2014 Phys. Rev. A 89 042514Google Scholar

    [30]

    Wu Z W, Dong C Z, Jiang J 2012 Phys. Rev. A 86 022712Google Scholar

    [31]

    腾华国, 王永昌 1988 西北师范大学学报 4 45Google Scholar

    Teng H G, Wang Y C 1988 J. Northwest Nor. Univ. 4 45Google Scholar

    [32]

    Wang K, Guo X L, Liu H T, Li D F, Long F Y, Han X Y, Duan B, Li J G, Huang M, Wang Y S 2015 Astrophys. J. Suppl. 218 16Google Scholar

    [33]

    Wang W J 1993 Nucl. Instrum. Methods B 73 159Google Scholar

    [34]

    Bastiaansen J, Philipsen V, Vervaecke F, Vandeweert E, Lievens P, Silverans R E 2003 Phys. Rev. B 68 073409Google Scholar

    [35]

    Kramida A, Ralchenko Yu, Reader J, NIST ASD Team https://www.nist.gov/pml/atomic-spectra-database [2019-02-19]

    [36]

    Atomic and Molecular Datebase http://www.camdb.ac.cn/ nsdc/ [2019-03-19]

    [37]

    Deslattes R D, Kessler Jr E G, Indelicato P, de Billy L, Lindroth E, Anton J 2003 Rev. Mod. Phys. 75 35Google Scholar

    [38]

    徐克尊 2000 高等原子分子物理 (北京: 科学出版社) 第117−119页

    Xu K Z 2000 Advanced Atomic Molecular Physics (Beijing: Science Press) pp117−119 (in Chinese)

    [39]

    曾谨言 2000 量子力学(卷Ⅱ)第三版 (北京: 科学出版社) 第660−661页

    Zeng J Y 2000 Quantum Mechanics (Vol.Ⅱ 3th Ed) (Beijing: Science Press) pp660−661 (in Chinese)

    [40]

    Nordlander P, Tully J C 1990 Phys. Rev. B 42 5564Google Scholar

    [41]

    Briand J P, Giardino G, Borsoni G, Froment M, Eddrief M, Sébenne C, Bardin S, Schneider D, Jin J, Khemliche H, Xie Z, Prior M 1996 Phys. Rev. A 54 4136Google Scholar

    [42]

    Clark M W, Schneider D, Dewitt D, McDonald J W, Bruch R, Safronova U I, Tolstikhina I Y, Schuch R 1993 Phys. Rev. A 47 3983Google Scholar

    [43]

    Zhou X M, Zhao Y T, Xiao G Q, Cheng R, Wang Y Y, Wang X, Sun Y B 2013 Nucl. Instrum. Methods B 299 61Google Scholar

    [44]

    Ren J R, Zhao Y T, Zhou X M, Wang X, Lei Y, Xu G, Cheng R, Wang Y Y, Liu S D, Sun Y B, Xiao G Q 2015 Phys. Rev. A 92 062710Google Scholar

  • 图 1  兰州重离子加速器国家实验室ECR离子源原子物理实验平台

    Fig. 1.  Schematic experimental setup for atomic physics platform on ECRIS in HIRFL.

    图 2  Si漂移探测器探测效率随X射线能量变化的关系图(在能量0.6−1.8 keV之间用5次多项式拟合, 能量1.8−4.0 keV用4次多项式拟合, 4.0−10 keV用3次多项式拟合)

    Fig. 2.  Efficiency values of the Silicon Drift Detector. The curve is a fifth polynomial in the 0.6−1.8 keV energy interval, a fourth polynomial in the 1.8−4.0 keV energy interval and a third polynomial in the 4.0–10 keV energy interval.

    图 3  动能一定(1360 keV)的129Xeq+离子入射Cu靶表面激发的近红外光谱线 (a) 129Xe21+; (b) 129Xe27+

    Fig. 3.  Measured near-infrared spectral lines induced by 129Xeq+ ions with 1360 keV kinetic energy impacting on Cu surface: (a) 129Xe21+; (b) 129Xe27+

    图 4  动能为4 MeV的129Xe20+离子入射Cu靶表面辐射的X射线谱

    Fig. 4.  X-ray spectra induced by 129Xe20+ ions with 4 MeV kinetic energy impacting on Cu surface.

    图 5  (a) 129Xeq+离子携带势能随电荷态q增加的趋势; (b)近红外光谱线的单粒子产额随电荷态q增加的趋势

    Fig. 5.  (a) Potential energy of the 129Xeq+ ion vs. the charge q; (b) single ion fluorescence yield of the near-infrared spectral lines as a function of the projectile charge q where the near-infrared spectral lines are induced by 1360 keV 129Xeq+ (q = 21—27) ion impacting on a Cu surface.

    表 1  129Xeq+入射Cu靶激发的红外光谱线

    Table 1.  Measured near-infrared spectral lines induced by 129Xeq+ ions on Cu surface

    IonObserved
    wavelength/nm
    Reference
    wavelength/nm
    Upper levelLower levelTransition
    type
    ConfigurationTermJConfigurationTermJ
    Xe I949.99 ± 0.05949.71[35]$5{\rm{p}}^5(2{\rm{P}}^\circ_{3/2})4{\rm{f}}$2[3/2]2$5{\rm{p} }^5(2{\rm{P} }^\circ_{3/2})5{\rm{d} }$2[3/2]°2E1
    Xe I1240.91 ± 0.011240.91[35]$5{\rm{p}}^5(2{\rm{P}}^\circ_{1/2})6{\rm{p}}$2[3/2]1$5{\rm{p} }^5(2{\rm{P} }^\circ_{3/2})5{\rm{d} }$2[3/2]°2E1
    Xe I1435.46 ± 0.011435.46[35]$5{\rm{p}}^5(2{\rm{P}}^\circ_{3/2})8{\rm{p}}$2[1/2]1$5{\rm{p} }^5(2{\rm{P} }^\circ_{3/2})7{\rm{s} } $ 2[3/2]°2E1
    Cu I1665.00 ± 0.021664.99[35]3d105d2D3/23d105p21/2E1
    Cu II829.78 ± 0.03829.85[35]3d9(2D5/2)7d2[2/5]23d8(3F)4s4p(1P°)3Fo2E1
    Cu II900.14 ± 0.02900.14[35]3d9(2D3/2)8s2[3/2]23d9(2D3/2)6p2[3/2]°1E1
    Cu II1079.74 ± 0.051079.79[35]3d9(2D5/2)5f 2[7/2]°43d9(2D5/2)5d 2[9/2]4E1
    Cu XXIII1140.06 ± 0.011140.0[36]2s22p2(3P)4p2Po3/22s22p2(3P)4p4So3/2M1, E2
    Cu XXIII1216.44 ± 0.041216.5[36]2p4(3P)3d4D5/22p4(1D)3p2Fo5/2E1
    Cu XXIII1345.36 ± 0.061345.5[36]2s22p2(3P)4f2Fo5/22s22p2(1D)4p2Fo5/2M1, E2
    Cu XXIII1374.79 ± 0.071374.0[36]2s2p3(1P)3d2Do5/22p4(3P)3s4P5/2E1
    Cu XXIII1420.31 ± 0.061420.1[36]2s22p2(3P)4f4Do1/22s22p2(1D)4p2Do1/2M1, E2
    下载: 导出CSV
    Baidu
  • [1]

    Lemell C, Stöck J, Burgdörfer J, Betz G, Winter H P, Aumayr F 1998 Phys. Rev. Lett. 81 1965Google Scholar

    [2]

    Woolsey N C, Hammel B A, Keane C J, Back C A, Moreno J C, Nash J K, Calisti A, Mosse C, R. Stamm, Talin B, Asfaw A, Klein L S, Lee R W 1998 Phys. Rev. E 57 4650Google Scholar

    [3]

    Kim K Y, Taylor A J, Glownia J H, Rodriguez G 2008 Nat. Photonics 2 605Google Scholar

    [4]

    Krasheninnikov A V, Nordlund K 2010 J. Appl. Phys. 107 071301Google Scholar

    [5]

    Lake R E, Pomeroy J M, Grube H, Sosolik C E 2011 Phys. Rev. Lett. 107 063202Google Scholar

    [6]

    段斌, 吴泽清, 王建国 2009 中国科学 G 39 43Google Scholar

    Duan B, Wu Z Q, Wang J G 2009 Sci. China G 39 43Google Scholar

    [7]

    段斌, 吴泽清, 王建国 2009 中国科学 G 39 241Google Scholar

    Duan B, Wu Z Q, Wang J G 2009 Sci. China G 39 241Google Scholar

    [8]

    Gruber E, Wilhelm R A, Pétuya R, Smejkal V, Kozubek R, Hierzenberger A, Bayer B C, Aldazabal I, Kazansky A K, Libisch F, Krasheninnikov A V, Schleberger M, Facsko S, Borisov A G, Arnau A, Aumayr F 2016 Nat. Commun. 7 13948Google Scholar

    [9]

    Ferguson B, Zhang X C 2002 Nat. Mater. 1 26Google Scholar

    [10]

    Hagstrum H D 1954 Phys. Rev. 96 336Google Scholar

    [11]

    Datz S 1983 Phys. Scr. T 3 79Google Scholar

    [12]

    Briand J P, de Billy L, Charles P, Essabaa S, Briand P, Desclaux J P, Geller R, Bliman S, Ristori C 1990 Phys. Rev. Lett. 65 1259Google Scholar

    [13]

    Burgdörfer J, Lerner P, Meyer F W 1991 Phys. Rev. A 44 5674Google Scholar

    [14]

    Köhrbrück R, Sommer K, Biersack J P, Neuhaus B J, Schippers S, Roncin P, Lecler D, Fremont F, Stolterfoht N 1992 Phys. Rev. A 45 4653Google Scholar

    [15]

    Beiersdorfer P, Olson R E, Brown G V, Chen H, Harris C L, Neill P A, Schweikhard L, Utter S B, Widmann K 2000 Phys. Rev. Lett. 85 5090Google Scholar

    [16]

    Morishita Y, Hutton R, Torii H A, Komaki K, Brage T, Ando K, Ishii K, Kanai Y, Masuda H, Sekiguchi M, Rosmej F B, Yamazaki Y 2004 Phys. Rev. A 70 012902Google Scholar

    [17]

    赵永涛, 张小安, 李福利, 肖国青, 詹文龙, 杨治虎 2003 52 2768Google Scholar

    Zhao Y T, Zhang X A, Li F L, Xiao G Q, Zhan WL, Yang Z H 2003 Acta Phys. Sin. 52 2768Google Scholar

    [18]

    Sporn M, Libiseller G, Neidhart T, Schmid M, Aumayr F, Winter H P, Varga P, 1997 Phys. Rev. Lett. 79 945Google Scholar

    [19]

    张小安, 杨治虎, 王党朝, 梅策香, 牛超英, 王伟, 戴斌, 肖国青 2009 58 6920Google Scholar

    Zhang X A, Yang Z H, Wang D C, Mei C X, Niu C Y, Wang W, Dai B, Xiao G Q 2009 Acta Phys. Sin. 58 6920Google Scholar

    [20]

    Wilhelm R A, Gruber E, Schwestka J, Kozubek Roland, Madeira T I, Marques J P, Kobus J, Krasheninnikov AV, Schleberger M, Aumayr F 2017 Phys. Rev. Lett. 119 103401Google Scholar

    [21]

    Hurricane O A, Callahan D A, Casey D T, Celliers P M, Cerjan C, Dewald E L, Dittrich T R, Döppner T, Hinkel D E, Berzak Hopkins L F, Kline J L, Le Pape S, Ma 1T, MacPhee A G, Milovich J L, Pak A, Park H S, Patel P K, Remington B A, Salmonson J D, Springer P T, Tommasini R 2014 Nature 506 343Google Scholar

    [22]

    Hollmann E M, Parks P B, Shiraki D, Alexander N, Eidietis N W, Lasnier C J, Moyer R A 2019 Phys. Rev. Lett. 122 065001Google Scholar

    [23]

    Dasgupta A, Clark R W, Ouart N D, Giuliani J L 2014 Phys. Scr. 89 14008Google Scholar

    [24]

    Träbert E, Grieser M, Hoffmann J, Krantz C, Repnow R, Wolf A 2012 Phys. Rev. A 85 042508Google Scholar

    [25]

    Dasgupta A, Clark R W, Ouart N D, Giuliani J L, Thornhill W, Davis J, Jones B, Ampleford D J, Hansen S B, Coverdale CA 2012 High Energy Density Phys. 8 284Google Scholar

    [26]

    Kawaguchi K, Sanechika N, Nishimura Y, Fujimori R, Oka T N, Hirahara Y, Jaman A I, Civiš S 2008 Chem. Phys. Lett. 463 38Google Scholar

    [27]

    Hinnov E, Suckewer S, Cohen S, Sato K 1982 Phys. Rev. A 25 2293Google Scholar

    [28]

    李家明, 赵中新 1981 30 105Google Scholar

    Li J M, Zhao Z X 1981 Acta Phys. Sin. 30 105Google Scholar

    [29]

    Han X Y, Gao X, Zeng D L, Jin R, Yan J, Li J M 2014 Phys. Rev. A 89 042514Google Scholar

    [30]

    Wu Z W, Dong C Z, Jiang J 2012 Phys. Rev. A 86 022712Google Scholar

    [31]

    腾华国, 王永昌 1988 西北师范大学学报 4 45Google Scholar

    Teng H G, Wang Y C 1988 J. Northwest Nor. Univ. 4 45Google Scholar

    [32]

    Wang K, Guo X L, Liu H T, Li D F, Long F Y, Han X Y, Duan B, Li J G, Huang M, Wang Y S 2015 Astrophys. J. Suppl. 218 16Google Scholar

    [33]

    Wang W J 1993 Nucl. Instrum. Methods B 73 159Google Scholar

    [34]

    Bastiaansen J, Philipsen V, Vervaecke F, Vandeweert E, Lievens P, Silverans R E 2003 Phys. Rev. B 68 073409Google Scholar

    [35]

    Kramida A, Ralchenko Yu, Reader J, NIST ASD Team https://www.nist.gov/pml/atomic-spectra-database [2019-02-19]

    [36]

    Atomic and Molecular Datebase http://www.camdb.ac.cn/ nsdc/ [2019-03-19]

    [37]

    Deslattes R D, Kessler Jr E G, Indelicato P, de Billy L, Lindroth E, Anton J 2003 Rev. Mod. Phys. 75 35Google Scholar

    [38]

    徐克尊 2000 高等原子分子物理 (北京: 科学出版社) 第117−119页

    Xu K Z 2000 Advanced Atomic Molecular Physics (Beijing: Science Press) pp117−119 (in Chinese)

    [39]

    曾谨言 2000 量子力学(卷Ⅱ)第三版 (北京: 科学出版社) 第660−661页

    Zeng J Y 2000 Quantum Mechanics (Vol.Ⅱ 3th Ed) (Beijing: Science Press) pp660−661 (in Chinese)

    [40]

    Nordlander P, Tully J C 1990 Phys. Rev. B 42 5564Google Scholar

    [41]

    Briand J P, Giardino G, Borsoni G, Froment M, Eddrief M, Sébenne C, Bardin S, Schneider D, Jin J, Khemliche H, Xie Z, Prior M 1996 Phys. Rev. A 54 4136Google Scholar

    [42]

    Clark M W, Schneider D, Dewitt D, McDonald J W, Bruch R, Safronova U I, Tolstikhina I Y, Schuch R 1993 Phys. Rev. A 47 3983Google Scholar

    [43]

    Zhou X M, Zhao Y T, Xiao G Q, Cheng R, Wang Y Y, Wang X, Sun Y B 2013 Nucl. Instrum. Methods B 299 61Google Scholar

    [44]

    Ren J R, Zhao Y T, Zhou X M, Wang X, Lei Y, Xu G, Cheng R, Wang Y Y, Liu S D, Sun Y B, Xiao G Q 2015 Phys. Rev. A 92 062710Google Scholar

  • [1] 吴怡娇, 孟天鸣, 张献文, 谭旭, 马蒲芳, 殷浩, 任百惠, 屠秉晟, 张瑞田, 肖君, 马新文, 邹亚明, 魏宝仁. 高电荷态Ar8+离子与He原子碰撞中双电子俘获量子态选择截面实验研究.  , 2024, 73(24): . doi: 10.7498/aps.73.20241290
    [2] 刘鑫, 汶伟强, 李冀光, 魏宝仁, 肖君. 高电荷态类硼离子2P3/22P1/2跃迁的实验和理论研究进展.  , 2024, 73(20): 203102. doi: 10.7498/aps.73.20241190
    [3] 王国东, 程锐, 王昭, 周泽贤, 骆夏辉, 史路林, 陈燕红, 雷瑜, 王瑜玉, 杨杰. 极化效应对Bohr速度能区O5+离子在低密度氢等离子体中的能损影响.  , 2023, 72(4): 043401. doi: 10.7498/aps.72.20221875
    [4] 史路林, 程锐, 王昭, 曹世权, 杨杰, 周泽贤, 陈燕红, 王国东, 惠得轩, 金雪剑, 吴晓霞, 雷瑜, 王瑜玉, 苏茂根. 近玻尔速度能区高电荷态离子与激光等离子体相互作用实验研究装置.  , 2023, 72(13): 133401. doi: 10.7498/aps.72.20230214
    [5] 张大成, 葛韩星, 巴雨璐, 汶伟强, 张怡, 陈冬阳, 汪寒冰, 马新文. 高电荷态离子阿秒激光光谱研究展望.  , 2023, 72(19): 193201. doi: 10.7498/aps.72.20230986
    [6] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路, 马新文. 电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量.  , 2022, 71(3): 033201. doi: 10.7498/aps.71.20211663
    [7] 张秉章, 宋张勇, 刘璇, 钱程, 方兴, 邵曹杰, 王伟, 刘俊亮, 徐俊奎, 冯勇, 朱志超, 郭艳玲, 陈林, 孙良亭, 杨治虎, 于得洋. 低能高电荷态${\boldsymbol{ {\rm{O}}^{q+}}}$离子与Al表面作用产生的X射线.  , 2021, 70(19): 193201. doi: 10.7498/aps.70.20210757
    [8] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路(Wan-Lu MA), 马新文. 电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量.  , 2021, (): . doi: 10.7498/aps.70.20211663
    [9] 杨兆锐, 张小安, 徐秋梅, 杨治虎. 高电荷态Krq+与Al表面碰撞发射可见光的研究.  , 2013, 62(4): 043401. doi: 10.7498/aps.62.043401
    [10] 梁昌慧, 张小安, 李耀宗, 赵永涛, 梅策香, 程锐, 周贤明, 雷瑜, 王兴, 孙渊博, 肖国青. 近Bohr速度的152Eu20+入射Au表面产生的X射线谱.  , 2013, 62(6): 063202. doi: 10.7498/aps.62.063202
    [11] 王兴, 赵永涛, 程锐, 周贤明, 徐戈, 孙渊博, 雷瑜, 王瑜玉, 任洁茹, 虞洋, 李永峰, 张小安, 李耀宗, 梁昌慧, 肖国青. 重离子轰击Ta靶引起的多电离效应.  , 2012, 61(19): 193201. doi: 10.7498/aps.61.193201
    [12] 张丽卿, 张崇宏, 杨义涛, 姚存峰, 孙友梅, 李炳生, 赵志明, 宋书建. 高电荷态离子126Xeq+引起GaN表面形貌变化研究.  , 2009, 58(8): 5578-5584. doi: 10.7498/aps.58.5578
    [13] 徐忠锋, 刘丽莉, 赵永涛, 陈亮, 朱键, 王瑜玉, 肖国青. 不同能量的高电荷态Ar12+离子辐照对Au纳米颗粒尺寸的影响.  , 2009, 58(6): 3833-3838. doi: 10.7498/aps.58.3833
    [14] 张小安, 杨治虎, 王党朝, 梅策香, 牛超英, 王伟, 戴斌, 肖国青. 类钴氙离子入射Ni表面激发的红外光谱线和X射线谱.  , 2009, 58(10): 6920-6925. doi: 10.7498/aps.58.6920
    [15] 彭海波, 王铁山, 韩运成, 丁大杰, 徐 鹤, 程 锐, 赵永涛, 王瑜玉. 高电荷态离子与Si(110)晶面碰撞的沟道效应研究.  , 2008, 57(4): 2161-2164. doi: 10.7498/aps.57.2161
    [16] 王 立, 张小安, 杨治虎, 陈熙萌, 张红强, 崔 莹, 邵剑雄, 徐 徐. 高电荷态离子入射Al表面库仑势对靶原子特征谱线强度的影响.  , 2008, 57(1): 137-142. doi: 10.7498/aps.57.137
    [17] 赵永涛, 肖国青, 徐忠锋, Abdul Qayyum, 王瑜玉, 张小安, 李福利, 詹文龙. 高电荷态离子40Arq+与Si表面作用中的电子发射产额.  , 2007, 56(10): 5734-5738. doi: 10.7498/aps.56.5734
    [18] 王瑜玉, 赵永涛, 肖国青, 房 燕, 张小安, 王铁山, 王释伟, 彭海波. 高电荷态离子207Pbq+(24≤q≤36)与Si(110)固体表面作用的电子发射研究.  , 2006, 55(2): 673-676. doi: 10.7498/aps.55.673
    [19] 杨治虎, 宋张勇, 陈熙萌, 张小安, 张艳萍, 赵永涛, 崔 莹, 张红强, 徐 徐, 邵健雄, 于得洋, 蔡晓红. 高电荷态离子Arq+与不同金属靶作用产生的X射线.  , 2006, 55(5): 2221-2227. doi: 10.7498/aps.55.2221
    [20] 张小安, 赵永涛, 李福利, 杨治虎, 肖国青, 詹文龙. 129Xe30+轰击Ni表面激发靶原子偶极跃迁和禁戒 (M1和E2)跃迁的特征光谱线.  , 2004, 53(10): 3341-3346. doi: 10.7498/aps.53.3341
计量
  • 文章访问数:  10112
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-06
  • 修回日期:  2020-07-02
  • 上网日期:  2020-10-22
  • 刊出日期:  2020-11-05

/

返回文章
返回
Baidu
map