-
基于手性结构设计了一种极化不敏感和双面吸波的超材料吸波体.该吸波体的结构单元由手性结构和介质基板组成.仿真的电磁波正、反向入射时超材料吸波体的吸收率表明:该吸波结构的正、反面是互易的,具有双面吸波特性.仿真的不同极化角下超材料吸波体的吸收率表明:该超材料吸波体具有极化不敏感特性.仿真的不同入射角下超材料吸波体的吸收率表明:该超材料吸波体的入射角较窄.仿真的吸波体单元的表面电流和磁能密度分布表明:电、磁场之间存在交叉耦合,吸波与手性有关.仿真的不同损耗情况下超材料吸波体的吸收率表明:基板的介质损耗在吸波过程中起主导作用,金属的电阻热可以忽略不计.该超材料吸波体可能在要求双面吸波的领域中具有潜在的应用.A polarization-insensitive and double-face-absorbing metamaterial absorber is presented, which is based on chiral structure. The unit cell of this absorber is comprised of a chiral structure and a dielectric substrate. Simulated absorbances under frontal and reverse incident directions indicate that the structure of this absorber is reciprocal, and thus this absorber has double-face-absorption property. Simulated absorbances under different polarization angles indicate that this absorber is polarization-insensitive. Simulated absorbances under different angles of incidence indicate that this absorber is narrow-angled. Simulated surface currents and magnetic energy density of the unit cell indicate that there exists cross coupling between electric field and magnetic field, and that the absorption is related to chirality. Simulated absorbances under different loss conditions indicate that dielectric loss of the substrate is dominant in the absorbing process, and that metal loss can be neglected. This absorber may have potential applications in some double-face-absorbing fields.
-
Keywords:
- polarization-insensitive /
- double-face-absorbing /
- chiral structure /
- metamaterial absorber
[1] Caloz C, Itoh T 2006 Electromagnetic metamaterials: transmission line theory and microwave applications: the engineering approach (1st ed) (New Jersey: John Wiley Sons, Inc.) p23
[2] Pendry J B, Holden A J, Stewart W J, Youngs I 1996 Phys. Rev. Lett. 76 4773
[3] [4] Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. Microwave Theory Tech. 47 2075
[5] [6] Veselago V G 1968 Sov. Phys. Usp. 10 509
[7] [8] Shelby R A, Smith D R, Schultz S 2001 Science 292 77
[9] [10] Smith D R, Schurig D, Rosenbluth M, Schultz S, Ramakrishna S A, Pendry J B 2003 Appl. Phys. Lett. 82 1506
[11] [12] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977
[13] [14] [15] Enoch S, Tayeb G, Sabouroux P, Gurin N, Vincent P 2002 Phys. Rev. Lett. 89 213902
[16] Colladey S, Tarot A C, Pouliguen P, Mahdjoubi K 2005 Microwave and Opt Tech Lett. 44 546
[17] [18] [19] Marques R, Martel J, Mesa F, Medina F 2002 Phys. Rev. Lett. 89 183901
[20] [21] Liu L, He S 2004 Optics Express. 12 4835
[22] Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402
[23] [24] [25] Tao H, Landy N I, Bingham C M, Zhan X, Averitt R D, Padilla W J 2008 Opt. Express 16 7181
[26] Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B 79 125104
[27] [28] [29] Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J, Averitt R D 2008 Phys. Rev. B 78 241103(R)
[30] Avitzour Y, Urzhumov Y A, Shvets G 2009 Phys. Rev. B 79 045131
[31] [32] Li Y X, Xie Y S, Zhang H W, Liu Y L, Wen Q Y, Ling W W 2009 J. Phys. D: Appl. Phys. 42 095408
[33] -
[1] Caloz C, Itoh T 2006 Electromagnetic metamaterials: transmission line theory and microwave applications: the engineering approach (1st ed) (New Jersey: John Wiley Sons, Inc.) p23
[2] Pendry J B, Holden A J, Stewart W J, Youngs I 1996 Phys. Rev. Lett. 76 4773
[3] [4] Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. Microwave Theory Tech. 47 2075
[5] [6] Veselago V G 1968 Sov. Phys. Usp. 10 509
[7] [8] Shelby R A, Smith D R, Schultz S 2001 Science 292 77
[9] [10] Smith D R, Schurig D, Rosenbluth M, Schultz S, Ramakrishna S A, Pendry J B 2003 Appl. Phys. Lett. 82 1506
[11] [12] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977
[13] [14] [15] Enoch S, Tayeb G, Sabouroux P, Gurin N, Vincent P 2002 Phys. Rev. Lett. 89 213902
[16] Colladey S, Tarot A C, Pouliguen P, Mahdjoubi K 2005 Microwave and Opt Tech Lett. 44 546
[17] [18] [19] Marques R, Martel J, Mesa F, Medina F 2002 Phys. Rev. Lett. 89 183901
[20] [21] Liu L, He S 2004 Optics Express. 12 4835
[22] Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402
[23] [24] [25] Tao H, Landy N I, Bingham C M, Zhan X, Averitt R D, Padilla W J 2008 Opt. Express 16 7181
[26] Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B 79 125104
[27] [28] [29] Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J, Averitt R D 2008 Phys. Rev. B 78 241103(R)
[30] Avitzour Y, Urzhumov Y A, Shvets G 2009 Phys. Rev. B 79 045131
[31] [32] Li Y X, Xie Y S, Zhang H W, Liu Y L, Wen Q Y, Ling W W 2009 J. Phys. D: Appl. Phys. 42 095408
[33]
计量
- 文章访问数: 11118
- PDF下载量: 1281
- 被引次数: 0