-
基于Eulerian-Eulerian方法和流体体积技术,建立了三维多相流体动力学凝固模型,并将其与质量、动量、溶质和热焓守恒方程相耦合,对Fe-Pb合金侧向凝固过程进行了数值模拟. 首先,分析了分布面积二次梯度(∇(∇SPb))和浓度二次梯度(∇(∇CPb))对偏析模式的影响,结果表明:液、气两相的流动相变使偏析模式表现为上端X形下端V形,X偏析由气相相变驱动力和多取向相变作用下的“散射”形成;t >tc时,随∇(∇SPb)和∇(∇CPb)曲线降低,X偏析的下偏析角增大,上偏析角和V偏析角减小,Pb收得率增大,有利于获得含量稳定弥散的凝固组织. 此外,还研究了液、气两相交互流动下通道偏析的形成机理,结果表明:通道偏析仅存在于流动-相变交互作用(ul·∇cl 和ug·∇cg)为负值的区域,该区域的流动扰动抑制合金的局部凝固,促进偏析通道生长;流动-相变交互作用负值越小,偏析通道持续增长越稳定. 模拟结果与实验结果相符合,验证了模型的准确性.The three-dimensional mathematical model for a three-phase flow during its horizontai solidification is studied using fluid dynamics method based on Eulerian-Eulerian and volume of fraction methods, in which the mass, momentum, species, and enthalpy conservation equations of the Fe-Pb alloy solidification process are solved simultaneously. Effects of Pb area quadratic gradient (∇ (∇SPb)) and Pb concentration quadratic gradient (∇ (∇CPb)) on the segregation formation are investigated. Results show that the segregation mode is manifested as X-segregates in the upper and V-segregates in the lower part during flow-solidification of liquid phase and gas phase. The X-segregates result from the phase transformation driving force of gas phase and “scattering” is due to the orientation of phase transition. When t >tc the lower ∇ (∇SPb) and ∇ (∇CPb) curves cause a larger yielding rate of Pb with a larger down angle of X-segregates and a smaller up angle of X-segregates and V-segregates. All these are favorable for the formation of a well-dispersed microstructure. In addition, the gas-liquid two-phase flow interaction term has an effect on channel segregation, showing that channels occur only in the region where the flow-phase transition interaction term (ul·∇cl and ug·∇cg) is negative. With a negative flow-phase transition interaction term the increase in flow velocity due to the flow perturbation and flow-phase transition interaction becomes more negative, thus the channel continues to grow and tends to be stable. Calculated results show good agreement with experimental data.
-
Keywords:
- multiphase solidification /
- formation of X-segregates /
- channel segregation /
- numerical simulation
[1] Nazábal J L, Urcola J J, Fuentes M 1984 Metallography. 71 439
[2] Murakami Y, Mine K, Usuki H 1988 J. Iron. Steel. Inst. Jpn. 74 1113
[3] Bernsmann G, Bleymehl M, Ehl R 2001 Stahl. Eisen. 121 87
[4] Iwamoto T, Murakami T 2004 JFE. Tech. Rep. 4 74
[5] Guduru R K, Scattergood R O, Koch C C, Murty K L, Guruswamy S, McCarter M K 2006 Scripta. Mater. 54 1879
[6] Yamauchi K, Nakagawa Y 1971 Jpn. J. Appl. Phys. 10 1730
[7] Burton B 1991 J. Phase. Equilib. 12 200
[8] Iwama N, Uchiyama M, Owaki S 1999 Curr. Adv. Mater. Process. 12 1387
[9] Mcdonald R J, Hunt J D 1969 Trans. Metall. Soc. AIME. 245 1993
[10] Mcdonald R J, Hunt J D 1970 Metall. Trans. 1 1787
[11] Sarazin J R, Hellawell A 1988 Metall. Trans. A 19 1861
[12] Shahani H, Amberg G, Fredriksson H 1991 Metall. Trans. A 23 2301
[13] Schneider M C, Beckermann C 1995 Int. J. Heat. Mass. Tran. 38 3455
[14] Belleta M, Combeau H, Fautrelle Y, Gobin D, Rady M, Arquis E, Budenkova O, Dussoubs B, Duterrail Y, Kumar A, Gandin C A, Goyeau B, Mosbah S, Založ nik M 2009 Int. J. Therm. Sci. 48 2013
[15] Wang T M, Yao S, Zhang X G, Jin J Z, Wu M, Ludwig A, Pustal B, B hrig-Polaczek A 2006 Acta. Metall. Sin. 42 584 (in Chinese)[王同敏, 姚山, 张兴国, 金俊泽, Wu M, Ludwig A, Pustal B, Bhrig-Polaczek A 2006 金属学报42 584]
[16] Cockroft S L, Maijer D M 2009 Modeling of Casting Welding and Advanced Solidification Processes (Warrendale: Wiley-IEEE Press) pp250-265
[17] Zhu C S, Wang Z P, Jing T, Xiao R Z 2006 Acta. Phys. Sin. 55 1502 (in chinese) [朱昌盛, 王智平, 荆涛, 肖荣振 2006 55 1502]
[18] Kumar A, Dussoubs B, Založ nik M, Combeau H 2009 Phys. J. Appl. Phys. 42 105503
[19] Li J, Wu M, Hao J, Ludwig A 2012 Comp. Mater. Sci. 55 407
[20] Wu M, Ludwig A 2006 Metall. Mater. Trans. A 37 1613
[21] Kumar A, Založ nik M, Combeau H 2012 Int. J. Therm. Sci. 54 33
[22] Schneider M C, Beckermann C 1995 Int. J. Heat. Mass. Tran. 38 3455
[23] Wu M, Ludwig A 2007 Metall. Mater. Trans. A 38 1465
[24] Xu D, Bai Y, Guo J, Fu H, Guo J J 2004 Int. J. Heat. Mass. Tran. 46 767
[25] Beckermann C, Viskanta R 1993 Appl. Mech. Rev. 46 1
[26] Liu D R, Sang B G, Kang X H, Li D Z 2009 Acta. Phys. Sin. 58 104 (in Chinese) [刘东戎, 桑宝光, 康秀红, 李殿中 2009 58 104]
[27] Založ nik M, Combeau H 2010 Comp. Mater. Sci. 48 1
[28] Wang K F, Guo J J, Mi G F, Li B S, Fu H Z 2008 Acta. Phys. Sin. 57 3048 (in chinese) [王狂飞, 郭景杰, 米国发, 李邦盛, 傅恒志2008 57 3048]
[29] Li Q, Guo Q Y, Li R D 2003 Chin. Phys. 15 778
[30] Monchoux J P, Rabkin E 2002 Acta. Mater. 50 3159
[31] Hu G X, Cai X, Rong Y H 2010 Fundamentals of Materials Science (Shanghai: Shanghai Jiao-tong University Press) pp131-140 (in Chinese) [胡赓祥, 蔡珣, 戎咏华2010 材料科学基础(上海: 上海交通大学出版社) 第131–140 页]
[32] Wu M, Könözsy L, Ludwig A, Schtzenhöfer W, Tanzer R 2008 Steel. Res. Int. 79 637
[33] Tong J S 1999 Theory of Molecular Aggregation and Application (BeiJing: Science Press) pp37-68 (in Chinese)[童景山1999 分子聚集理论及其应用(北京: 科学出版社) 第37–68 页]
[34] Yaguchi H 1986 J. Applied. Metalworking. 4 214
-
[1] Nazábal J L, Urcola J J, Fuentes M 1984 Metallography. 71 439
[2] Murakami Y, Mine K, Usuki H 1988 J. Iron. Steel. Inst. Jpn. 74 1113
[3] Bernsmann G, Bleymehl M, Ehl R 2001 Stahl. Eisen. 121 87
[4] Iwamoto T, Murakami T 2004 JFE. Tech. Rep. 4 74
[5] Guduru R K, Scattergood R O, Koch C C, Murty K L, Guruswamy S, McCarter M K 2006 Scripta. Mater. 54 1879
[6] Yamauchi K, Nakagawa Y 1971 Jpn. J. Appl. Phys. 10 1730
[7] Burton B 1991 J. Phase. Equilib. 12 200
[8] Iwama N, Uchiyama M, Owaki S 1999 Curr. Adv. Mater. Process. 12 1387
[9] Mcdonald R J, Hunt J D 1969 Trans. Metall. Soc. AIME. 245 1993
[10] Mcdonald R J, Hunt J D 1970 Metall. Trans. 1 1787
[11] Sarazin J R, Hellawell A 1988 Metall. Trans. A 19 1861
[12] Shahani H, Amberg G, Fredriksson H 1991 Metall. Trans. A 23 2301
[13] Schneider M C, Beckermann C 1995 Int. J. Heat. Mass. Tran. 38 3455
[14] Belleta M, Combeau H, Fautrelle Y, Gobin D, Rady M, Arquis E, Budenkova O, Dussoubs B, Duterrail Y, Kumar A, Gandin C A, Goyeau B, Mosbah S, Založ nik M 2009 Int. J. Therm. Sci. 48 2013
[15] Wang T M, Yao S, Zhang X G, Jin J Z, Wu M, Ludwig A, Pustal B, B hrig-Polaczek A 2006 Acta. Metall. Sin. 42 584 (in Chinese)[王同敏, 姚山, 张兴国, 金俊泽, Wu M, Ludwig A, Pustal B, Bhrig-Polaczek A 2006 金属学报42 584]
[16] Cockroft S L, Maijer D M 2009 Modeling of Casting Welding and Advanced Solidification Processes (Warrendale: Wiley-IEEE Press) pp250-265
[17] Zhu C S, Wang Z P, Jing T, Xiao R Z 2006 Acta. Phys. Sin. 55 1502 (in chinese) [朱昌盛, 王智平, 荆涛, 肖荣振 2006 55 1502]
[18] Kumar A, Dussoubs B, Založ nik M, Combeau H 2009 Phys. J. Appl. Phys. 42 105503
[19] Li J, Wu M, Hao J, Ludwig A 2012 Comp. Mater. Sci. 55 407
[20] Wu M, Ludwig A 2006 Metall. Mater. Trans. A 37 1613
[21] Kumar A, Založ nik M, Combeau H 2012 Int. J. Therm. Sci. 54 33
[22] Schneider M C, Beckermann C 1995 Int. J. Heat. Mass. Tran. 38 3455
[23] Wu M, Ludwig A 2007 Metall. Mater. Trans. A 38 1465
[24] Xu D, Bai Y, Guo J, Fu H, Guo J J 2004 Int. J. Heat. Mass. Tran. 46 767
[25] Beckermann C, Viskanta R 1993 Appl. Mech. Rev. 46 1
[26] Liu D R, Sang B G, Kang X H, Li D Z 2009 Acta. Phys. Sin. 58 104 (in Chinese) [刘东戎, 桑宝光, 康秀红, 李殿中 2009 58 104]
[27] Založ nik M, Combeau H 2010 Comp. Mater. Sci. 48 1
[28] Wang K F, Guo J J, Mi G F, Li B S, Fu H Z 2008 Acta. Phys. Sin. 57 3048 (in chinese) [王狂飞, 郭景杰, 米国发, 李邦盛, 傅恒志2008 57 3048]
[29] Li Q, Guo Q Y, Li R D 2003 Chin. Phys. 15 778
[30] Monchoux J P, Rabkin E 2002 Acta. Mater. 50 3159
[31] Hu G X, Cai X, Rong Y H 2010 Fundamentals of Materials Science (Shanghai: Shanghai Jiao-tong University Press) pp131-140 (in Chinese) [胡赓祥, 蔡珣, 戎咏华2010 材料科学基础(上海: 上海交通大学出版社) 第131–140 页]
[32] Wu M, Könözsy L, Ludwig A, Schtzenhöfer W, Tanzer R 2008 Steel. Res. Int. 79 637
[33] Tong J S 1999 Theory of Molecular Aggregation and Application (BeiJing: Science Press) pp37-68 (in Chinese)[童景山1999 分子聚集理论及其应用(北京: 科学出版社) 第37–68 页]
[34] Yaguchi H 1986 J. Applied. Metalworking. 4 214
计量
- 文章访问数: 6938
- PDF下载量: 538
- 被引次数: 0