搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe-Pb合金凝固多相体系内偏析形成过程的三维数值模拟

王哲 王发展 王欣 何银花 马姗 吴振

引用本文:
Citation:

Fe-Pb合金凝固多相体系内偏析形成过程的三维数值模拟

王哲, 王发展, 王欣, 何银花, 马姗, 吴振

Three-dimensional modelling and numerical simulation on segregation during Fe-Pb alloy solidification in a multiphase system

Wang Zhe, Wang Fa-Zhan, Wang Xin, He Yin-Hua, Ma Shan, Wu Zhen
PDF
导出引用
  • 基于Eulerian-Eulerian方法和流体体积技术,建立了三维多相流体动力学凝固模型,并将其与质量、动量、溶质和热焓守恒方程相耦合,对Fe-Pb合金侧向凝固过程进行了数值模拟. 首先,分析了分布面积二次梯度(∇(∇SPb))和浓度二次梯度(∇(∇CPb))对偏析模式的影响,结果表明:液、气两相的流动相变使偏析模式表现为上端X形下端V形,X偏析由气相相变驱动力和多取向相变作用下的“散射”形成;t >tc时,随∇(∇SPb)和∇(∇CPb)曲线降低,X偏析的下偏析角增大,上偏析角和V偏析角减小,Pb收得率增大,有利于获得含量稳定弥散的凝固组织. 此外,还研究了液、气两相交互流动下通道偏析的形成机理,结果表明:通道偏析仅存在于流动-相变交互作用(ul·∇cl 和ug·∇cg)为负值的区域,该区域的流动扰动抑制合金的局部凝固,促进偏析通道生长;流动-相变交互作用负值越小,偏析通道持续增长越稳定. 模拟结果与实验结果相符合,验证了模型的准确性.
    The three-dimensional mathematical model for a three-phase flow during its horizontai solidification is studied using fluid dynamics method based on Eulerian-Eulerian and volume of fraction methods, in which the mass, momentum, species, and enthalpy conservation equations of the Fe-Pb alloy solidification process are solved simultaneously. Effects of Pb area quadratic gradient (∇ (∇SPb)) and Pb concentration quadratic gradient (∇ (∇CPb)) on the segregation formation are investigated. Results show that the segregation mode is manifested as X-segregates in the upper and V-segregates in the lower part during flow-solidification of liquid phase and gas phase. The X-segregates result from the phase transformation driving force of gas phase and “scattering” is due to the orientation of phase transition. When t >tc the lower ∇ (∇SPb) and ∇ (∇CPb) curves cause a larger yielding rate of Pb with a larger down angle of X-segregates and a smaller up angle of X-segregates and V-segregates. All these are favorable for the formation of a well-dispersed microstructure. In addition, the gas-liquid two-phase flow interaction term has an effect on channel segregation, showing that channels occur only in the region where the flow-phase transition interaction term (ul·∇cl and ug·∇cg) is negative. With a negative flow-phase transition interaction term the increase in flow velocity due to the flow perturbation and flow-phase transition interaction becomes more negative, thus the channel continues to grow and tends to be stable. Calculated results show good agreement with experimental data.
    • 基金项目: 十二五期间国家科技支撑计划项目(批准号:2011BAE31B02)资助的课题.
    • Funds: Project supported by the National Key Technology R&D Program during the 12th Five-year Plan Period of China (Grant No. 2011BAE31B02).
    [1]

    Nazábal J L, Urcola J J, Fuentes M 1984 Metallography. 71 439

    [2]

    Murakami Y, Mine K, Usuki H 1988 J. Iron. Steel. Inst. Jpn. 74 1113

    [3]

    Bernsmann G, Bleymehl M, Ehl R 2001 Stahl. Eisen. 121 87

    [4]

    Iwamoto T, Murakami T 2004 JFE. Tech. Rep. 4 74

    [5]

    Guduru R K, Scattergood R O, Koch C C, Murty K L, Guruswamy S, McCarter M K 2006 Scripta. Mater. 54 1879

    [6]

    Yamauchi K, Nakagawa Y 1971 Jpn. J. Appl. Phys. 10 1730

    [7]

    Burton B 1991 J. Phase. Equilib. 12 200

    [8]

    Iwama N, Uchiyama M, Owaki S 1999 Curr. Adv. Mater. Process. 12 1387

    [9]

    Mcdonald R J, Hunt J D 1969 Trans. Metall. Soc. AIME. 245 1993

    [10]

    Mcdonald R J, Hunt J D 1970 Metall. Trans. 1 1787

    [11]

    Sarazin J R, Hellawell A 1988 Metall. Trans. A 19 1861

    [12]

    Shahani H, Amberg G, Fredriksson H 1991 Metall. Trans. A 23 2301

    [13]

    Schneider M C, Beckermann C 1995 Int. J. Heat. Mass. Tran. 38 3455

    [14]

    Belleta M, Combeau H, Fautrelle Y, Gobin D, Rady M, Arquis E, Budenkova O, Dussoubs B, Duterrail Y, Kumar A, Gandin C A, Goyeau B, Mosbah S, Založ nik M 2009 Int. J. Therm. Sci. 48 2013

    [15]

    Wang T M, Yao S, Zhang X G, Jin J Z, Wu M, Ludwig A, Pustal B, B hrig-Polaczek A 2006 Acta. Metall. Sin. 42 584 (in Chinese)[王同敏, 姚山, 张兴国, 金俊泽, Wu M, Ludwig A, Pustal B, Bhrig-Polaczek A 2006 金属学报42 584]

    [16]

    Cockroft S L, Maijer D M 2009 Modeling of Casting Welding and Advanced Solidification Processes (Warrendale: Wiley-IEEE Press) pp250-265

    [17]

    Zhu C S, Wang Z P, Jing T, Xiao R Z 2006 Acta. Phys. Sin. 55 1502 (in chinese) [朱昌盛, 王智平, 荆涛, 肖荣振 2006 55 1502]

    [18]

    Kumar A, Dussoubs B, Založ nik M, Combeau H 2009 Phys. J. Appl. Phys. 42 105503

    [19]

    Li J, Wu M, Hao J, Ludwig A 2012 Comp. Mater. Sci. 55 407

    [20]

    Wu M, Ludwig A 2006 Metall. Mater. Trans. A 37 1613

    [21]

    Kumar A, Založ nik M, Combeau H 2012 Int. J. Therm. Sci. 54 33

    [22]

    Schneider M C, Beckermann C 1995 Int. J. Heat. Mass. Tran. 38 3455

    [23]

    Wu M, Ludwig A 2007 Metall. Mater. Trans. A 38 1465

    [24]

    Xu D, Bai Y, Guo J, Fu H, Guo J J 2004 Int. J. Heat. Mass. Tran. 46 767

    [25]

    Beckermann C, Viskanta R 1993 Appl. Mech. Rev. 46 1

    [26]

    Liu D R, Sang B G, Kang X H, Li D Z 2009 Acta. Phys. Sin. 58 104 (in Chinese) [刘东戎, 桑宝光, 康秀红, 李殿中 2009 58 104]

    [27]

    Založ nik M, Combeau H 2010 Comp. Mater. Sci. 48 1

    [28]

    Wang K F, Guo J J, Mi G F, Li B S, Fu H Z 2008 Acta. Phys. Sin. 57 3048 (in chinese) [王狂飞, 郭景杰, 米国发, 李邦盛, 傅恒志2008 57 3048]

    [29]

    Li Q, Guo Q Y, Li R D 2003 Chin. Phys. 15 778

    [30]

    Monchoux J P, Rabkin E 2002 Acta. Mater. 50 3159

    [31]

    Hu G X, Cai X, Rong Y H 2010 Fundamentals of Materials Science (Shanghai: Shanghai Jiao-tong University Press) pp131-140 (in Chinese) [胡赓祥, 蔡珣, 戎咏华2010 材料科学基础(上海: 上海交通大学出版社) 第131–140 页]

    [32]

    Wu M, Könözsy L, Ludwig A, Schtzenhöfer W, Tanzer R 2008 Steel. Res. Int. 79 637

    [33]

    Tong J S 1999 Theory of Molecular Aggregation and Application (BeiJing: Science Press) pp37-68 (in Chinese)[童景山1999 分子聚集理论及其应用(北京: 科学出版社) 第37–68 页]

    [34]

    Yaguchi H 1986 J. Applied. Metalworking. 4 214

  • [1]

    Nazábal J L, Urcola J J, Fuentes M 1984 Metallography. 71 439

    [2]

    Murakami Y, Mine K, Usuki H 1988 J. Iron. Steel. Inst. Jpn. 74 1113

    [3]

    Bernsmann G, Bleymehl M, Ehl R 2001 Stahl. Eisen. 121 87

    [4]

    Iwamoto T, Murakami T 2004 JFE. Tech. Rep. 4 74

    [5]

    Guduru R K, Scattergood R O, Koch C C, Murty K L, Guruswamy S, McCarter M K 2006 Scripta. Mater. 54 1879

    [6]

    Yamauchi K, Nakagawa Y 1971 Jpn. J. Appl. Phys. 10 1730

    [7]

    Burton B 1991 J. Phase. Equilib. 12 200

    [8]

    Iwama N, Uchiyama M, Owaki S 1999 Curr. Adv. Mater. Process. 12 1387

    [9]

    Mcdonald R J, Hunt J D 1969 Trans. Metall. Soc. AIME. 245 1993

    [10]

    Mcdonald R J, Hunt J D 1970 Metall. Trans. 1 1787

    [11]

    Sarazin J R, Hellawell A 1988 Metall. Trans. A 19 1861

    [12]

    Shahani H, Amberg G, Fredriksson H 1991 Metall. Trans. A 23 2301

    [13]

    Schneider M C, Beckermann C 1995 Int. J. Heat. Mass. Tran. 38 3455

    [14]

    Belleta M, Combeau H, Fautrelle Y, Gobin D, Rady M, Arquis E, Budenkova O, Dussoubs B, Duterrail Y, Kumar A, Gandin C A, Goyeau B, Mosbah S, Založ nik M 2009 Int. J. Therm. Sci. 48 2013

    [15]

    Wang T M, Yao S, Zhang X G, Jin J Z, Wu M, Ludwig A, Pustal B, B hrig-Polaczek A 2006 Acta. Metall. Sin. 42 584 (in Chinese)[王同敏, 姚山, 张兴国, 金俊泽, Wu M, Ludwig A, Pustal B, Bhrig-Polaczek A 2006 金属学报42 584]

    [16]

    Cockroft S L, Maijer D M 2009 Modeling of Casting Welding and Advanced Solidification Processes (Warrendale: Wiley-IEEE Press) pp250-265

    [17]

    Zhu C S, Wang Z P, Jing T, Xiao R Z 2006 Acta. Phys. Sin. 55 1502 (in chinese) [朱昌盛, 王智平, 荆涛, 肖荣振 2006 55 1502]

    [18]

    Kumar A, Dussoubs B, Založ nik M, Combeau H 2009 Phys. J. Appl. Phys. 42 105503

    [19]

    Li J, Wu M, Hao J, Ludwig A 2012 Comp. Mater. Sci. 55 407

    [20]

    Wu M, Ludwig A 2006 Metall. Mater. Trans. A 37 1613

    [21]

    Kumar A, Založ nik M, Combeau H 2012 Int. J. Therm. Sci. 54 33

    [22]

    Schneider M C, Beckermann C 1995 Int. J. Heat. Mass. Tran. 38 3455

    [23]

    Wu M, Ludwig A 2007 Metall. Mater. Trans. A 38 1465

    [24]

    Xu D, Bai Y, Guo J, Fu H, Guo J J 2004 Int. J. Heat. Mass. Tran. 46 767

    [25]

    Beckermann C, Viskanta R 1993 Appl. Mech. Rev. 46 1

    [26]

    Liu D R, Sang B G, Kang X H, Li D Z 2009 Acta. Phys. Sin. 58 104 (in Chinese) [刘东戎, 桑宝光, 康秀红, 李殿中 2009 58 104]

    [27]

    Založ nik M, Combeau H 2010 Comp. Mater. Sci. 48 1

    [28]

    Wang K F, Guo J J, Mi G F, Li B S, Fu H Z 2008 Acta. Phys. Sin. 57 3048 (in chinese) [王狂飞, 郭景杰, 米国发, 李邦盛, 傅恒志2008 57 3048]

    [29]

    Li Q, Guo Q Y, Li R D 2003 Chin. Phys. 15 778

    [30]

    Monchoux J P, Rabkin E 2002 Acta. Mater. 50 3159

    [31]

    Hu G X, Cai X, Rong Y H 2010 Fundamentals of Materials Science (Shanghai: Shanghai Jiao-tong University Press) pp131-140 (in Chinese) [胡赓祥, 蔡珣, 戎咏华2010 材料科学基础(上海: 上海交通大学出版社) 第131–140 页]

    [32]

    Wu M, Könözsy L, Ludwig A, Schtzenhöfer W, Tanzer R 2008 Steel. Res. Int. 79 637

    [33]

    Tong J S 1999 Theory of Molecular Aggregation and Application (BeiJing: Science Press) pp37-68 (in Chinese)[童景山1999 分子聚集理论及其应用(北京: 科学出版社) 第37–68 页]

    [34]

    Yaguchi H 1986 J. Applied. Metalworking. 4 214

  • [1] 刘扬, 韩燕龙, 贾富国, 姚丽娜, 王会, 史宇菲. 椭球颗粒搅拌运动及混合特性的数值模拟研究.  , 2015, 64(11): 114501. doi: 10.7498/aps.64.114501
    [2] 高启, 张传飞, 周林, 李正宏, 吴泽清, 雷雨, 章春来, 祖小涛. Z箍缩Al等离子体X特征辐射谱线数值模拟及考虑叠加效应后的修正.  , 2014, 63(12): 125202. doi: 10.7498/aps.63.125202
    [3] 王新鑫, 樊丁, 黄健康, 黄勇. 双钨极耦合电弧数值模拟.  , 2013, 62(22): 228101. doi: 10.7498/aps.62.228101
    [4] 陈石, 王辉, 沈胜强, 梁刚涛. 液滴振荡模型及与数值模拟的对比.  , 2013, 62(20): 204702. doi: 10.7498/aps.62.204702
    [5] 欧阳建明, 马燕云, 邵福球, 邹德滨, 刘建勋. 高空核爆炸X射线电离的时空分布数值模拟.  , 2012, 61(24): 242801. doi: 10.7498/aps.61.242801
    [6] 欧阳建明, 马燕云, 邵福球, 邹德滨. 高空核爆炸下大气的X射线电离及演化过程数值模拟.  , 2012, 61(8): 083201. doi: 10.7498/aps.61.083201
    [7] 赵啦啦, 刘初升, 闫俊霞, 蒋小伟, 朱艳. 不同振动模式下颗粒分离行为的数值模拟.  , 2010, 59(4): 2582-2588. doi: 10.7498/aps.59.2582
    [8] 蔡利兵, 王建国. 介质表面高功率微波击穿的数值模拟.  , 2009, 58(5): 3268-3273. doi: 10.7498/aps.58.3268
    [9] 杨玉娟, 王锦程, 张玉祥, 朱耀产, 杨根仓. 共晶形态层—棒转变的多相场法研究.  , 2009, 58(1): 650-654. doi: 10.7498/aps.58.650
    [10] 刘东戎, 桑宝光, 康秀红, 李殿中. 考虑固相移动的大尺寸钢锭宏观偏析数值模拟.  , 2009, 58(13): 104-S111. doi: 10.7498/aps.58.104
    [11] 杨玉娟, 王锦程, 张玉祥, 朱耀产, 杨根仓. 采用多相场法研究三维层片共晶生长的厚度效应.  , 2008, 57(8): 5290-5295. doi: 10.7498/aps.57.5290
    [12] 王狂飞, 郭景杰, 米国发, 李邦盛, 傅恒志. Ti-45at.% Al合金定向凝固过程中显微组织演化的计算机模拟.  , 2008, 57(5): 3048-3058. doi: 10.7498/aps.57.3048
    [13] 欧阳建明, 邵福球, 林明东. 含氧等离子体中臭氧形成过程数值模拟.  , 2008, 57(5): 3293-3297. doi: 10.7498/aps.57.3293
    [14] 黄勤超, 罗家融, 王华忠, 李 翀. EAST装置等离子体放电位形快速识别研究.  , 2006, 55(1): 281-286. doi: 10.7498/aps.55.281
    [15] 朱昌盛, 王智平, 荆 涛, 肖荣振. 二元合金微观偏析的相场法数值模拟.  , 2006, 55(3): 1502-1507. doi: 10.7498/aps.55.1502
    [16] 张远涛, 王德真, 王艳辉. 大气压介质阻挡丝状放电时空演化数值模拟.  , 2005, 54(10): 4808-4815. doi: 10.7498/aps.54.4808
    [17] 齐红基, 黄立华, 邵建达, 范正修. Kuramoto-Sivashinsky与Karda-Parisi-Zhang模型中生长界面分形特性研究.  , 2003, 52(11): 2743-2749. doi: 10.7498/aps.52.2743
    [18] 秦 颖, 王晓钢, 董 闯, 郝胜智, 刘 悦, 邹建新, 吴爱民, 关庆丰. 强流脉冲电子束诱发温度场及表面熔坑的形成.  , 2003, 52(12): 3043-3048. doi: 10.7498/aps.52.3043
    [19] 訾炳涛, 姚可夫, 许光明, 崔建忠. 脉冲磁场下金属熔体凝固流场的数值模拟.  , 2003, 52(1): 115-119. doi: 10.7498/aps.52.115
    [20] 丁伯江, 匡光力, 刘岳修, 沈慰慈, 俞家文, 石跃江. 低杂波电流驱动的数值模拟.  , 2002, 51(11): 2556-2561. doi: 10.7498/aps.51.2556
计量
  • 文章访问数:  6938
  • PDF下载量:  538
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-15
  • 修回日期:  2014-01-01
  • 刊出日期:  2014-04-05

/

返回文章
返回
Baidu
map