搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

晶格失配对GaInP/InxGa1-xAs/InyGa1-yAs倒装三结太阳电池性能影响的分析

马大燕 陈诺夫 付蕊 刘虎 白一鸣 弭辙 陈吉堃

引用本文:
Citation:

晶格失配对GaInP/InxGa1-xAs/InyGa1-yAs倒装三结太阳电池性能影响的分析

马大燕, 陈诺夫, 付蕊, 刘虎, 白一鸣, 弭辙, 陈吉堃

Analyses of the effect of mismatch on the performance of inverted GaInP/InxGa1-xAs/InyGa1-yAs triple-junction solar cells

Ma Da-Yan, Chen Nuo-Fu, Fu Rui, Liu Hu, Bai Yi-Ming, Mi Zhe, Chen Ji-Kun
PDF
导出引用
  • 传统GaInP/(In)GaAs/Ge三结太阳电池因受其带隙组合的限制,转换效率再提升空间不大.倒装结构三结太阳电池因其更优的带隙组合期望可以得到更高的效率.基于细致平衡原理,结合P-N结形成机理,应用MATLAB语言对双晶格失配GaInP(1.90 eV)/InxGa1-xAs/InyGa1-yAs倒装结构三结太阳电池底、中电池的不同带隙组合进行模拟优化.模拟结果表明在AM1.5D,500倍聚光(500 suns)下,禁带宽度组合为1.90/1.38/0.94 eV的带隙最优,综合材料成本与试验条件,当顶、中电池最优厚度组合为4 upm和3.2 upm时理论转化效率高达51.22%,此时两个异质结的晶格失配度分别为0.17%和2.36%.忽略渐变缓冲层生长后底电池位错的影响,通过计算0.17%的晶格失配引入1.70105 cm-2的插入位错密度,对比单晶格失配GaInP/GaAs/In0.32Ga0.68As(0.99 eV)倒装结构三结太阳电池光电转化效率仍提高了0.3%.
    The traditional lattice matched GaInP/(In) GaAs/Ge triple-junction (3J) solar cell has no much room to enhance its practical achievable conversion efficiency because of its inappropriate ensemble of bandgap energies. According to the P-N junction formation mechanism and the close equilibrium condition, we explore a series of computational codes in the framework of MATLAB to simulate and optimize the inverted structure of series-connected 3J solar cells with a fixed top bandgap of 1.90 eV on GaAs substrate. In this paper, structural optimization is conducted in the real device design, because the realistic (QE) is closely related to a set of material parameters in the subcell, i.e., the absorbtion coefficient of material, subcell thickness, minority carrier diffusion length, surface recombination velocity, etc. The results indicate improved inverted 3J solar cells with nearly optimized bandgaps of 1.90, 1.38, and 0.94 eV, by utilizing two independently lattice-mismatches (0.17% and 2.36% misfit respectively) to the GaAs substrate. A theoretical efficiency of 51.25% at 500 suns is demonstrated with this inverted design with the optimal thickness (4 m GaInP top and 3.1 m InGaAs middle). By contrast, the efficiency with the infinite thickness of subcells is reduced by 1%, which is mainly attributed to the effect of minority carrier recombination on Jsc. Exactly speaking, if photo-generated carriers make a contribution to Jsc, they must be collected effectively by the P-N junction before recombining. A new model is proposed based on the effect of dislocation on the metamorphic structure properties by regarding dislocation as minority-carrier recombination center. Our calculation indicates that threading dislocations density in the middle junction is approximate to 1.70105 cm-2 when dislocations in the gradient buffer layer are neglected. The theoretical efficiency is increased by 0.3% compared with the inverted design containing a single metamorphic junction. As a result, based on the two metamorphic combinations, a solar cell with an area of 30.25 mm2 is prepared. The efficiency of the designed cell with two lattice-mismatched junctions reaches 40.01% at 500 suns (AM1.5D, 38.4 W/cm2, 25℃), which is 0.4% higher than that of the single metamorphic junction 3J solar cell.
      Corresponding author: Chen Nuo-Fu, nfchen@ncepu.edu.cn;jikunchen@ustb.edu.cn ; Chen Ji-Kun, nfchen@ncepu.edu.cn;jikunchen@ustb.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Beijing,China (Grant No.2151004).
    [1]

    King R R, Boca A, Hong W, Liu X Q, Bhusari D, Larrabee D, Edmondson K M, Law D C, Fetzer C M, Mesropian S, Karam N H 2009 Proceedings of the 24th European Photovoltaic Solar Energy Conference and Exhibition Hamburg, Germany, Sep. 21-25, 2009 p55

    [2]

    Green M A, Emery K, Hishikawa Y, Warta W, Dunlop E D 2015 Prog. Photovolt:Res. Appl. 23 805

    [3]

    Green M A, Emery K, Hishikawa Y, Warta W, Dunlop E D 2015 Prog. Photovolt:Res. Appl. 23 1

    [4]

    Hashem I E, Carlin C Z, Hagar B G, Colter P C, Bedair S M 2016 J. Appl. Phys. 119 172

    [5]

    Takamoto T, Washio H, Juso H 2014 Proceedings of the 40th IEEE Photovoltaic Specialists Conference Denver, Colorado, USA, June 8-13, 2014 p1

    [6]

    Geisz J F, Kurtz S R, Wanlass M W, Ward J S, Duda A, Friedman D J, Olson J M, McMahon W E, Moriarty T E, Kieh J T, Romero M J, Norman A G, Jones K M 2008 Proceedings of the 33th IEEE Photovoltaic Specialists Conference San Diego, California, USA, May 11-16, 2008 p1

    [7]

    Geisz J F, Kurtz S R, Wanlass M W, Ward J S, Duda A, Friedman D J, Olson J M, McMahon W E, Moriarty T E, Kieh J T, Romero M J, Norman A G, Jones K M 2008 Appl. Phys. Lett. 93 123505

    [8]

    Faine P, Kurtz S R, Olson J M 1990 J. Appl. Phys. 68 339

    [9]

    Luque A, Hegedus S 2011 Handbook of Photovoltaic Science and Engineering (Second Edition) (New York:Wiley) pp323-326

    [10]

    Kurtz S R, Olson J M, Friedman D J, Geisz J F, Bertness K A, Kibbler A E 1999 Proceedings of the Materials Research Society's Spring Meeting San Francisco, California, USA, April 5-9, 1999 p95

    [11]

    Ghannam M Y, Poortmans J, Nijs J F, Mertens R P 2003 Proceedings of the 3rd world Conference on Photovoltaic Energy Conversion Osaka, Japan, May 11-18, 2003 p666

    [12]

    Yamaguchi M, Amano C 1985 J. Appl. Phys. 58 3601

    [13]

    Yamaguchi M, Amano C, Itoh Y 1989 J. Appl. Phys. 66 915

    [14]

    1 Zhang Y, Shan Z F, Cai J J, Wu H Q, Li J C, Chen K X, Lin Z W, Wang X W 2013 Acta Phys. Sin. 62 158802 (in Chinese)[张永, 单智发, 蔡建九, 吴洪清, 李俊承, 陈凯轩, 林志伟, 王向武 2013 62 158802]

    [15]

    Orders P J, Usher B F 1987 Appl. Phys. Lett. 50 980

    [16]

    People R, Bean J C. 1985 Appl. Phys. Lett. 47 322

    [17]

    Matthews J W, Blakeslee A E 1974 J. Cryst. Growth 27 118

    [18]

    Matthews J W, Mader S, Light T B 1970 J. Appl. Phys. 41 3800

    [19]

    Yastrubchak O, Wosinski T, Domagala J Z, Lusakowska E, Figielski T, Pecz B, Toth A L 2004 J. Phys.:Condens. Matter 16 S1

    [20]

    Chang K H, Bhattacharya P K, Gibala R 1989 J. Appl. Phys. 66 2993

  • [1]

    King R R, Boca A, Hong W, Liu X Q, Bhusari D, Larrabee D, Edmondson K M, Law D C, Fetzer C M, Mesropian S, Karam N H 2009 Proceedings of the 24th European Photovoltaic Solar Energy Conference and Exhibition Hamburg, Germany, Sep. 21-25, 2009 p55

    [2]

    Green M A, Emery K, Hishikawa Y, Warta W, Dunlop E D 2015 Prog. Photovolt:Res. Appl. 23 805

    [3]

    Green M A, Emery K, Hishikawa Y, Warta W, Dunlop E D 2015 Prog. Photovolt:Res. Appl. 23 1

    [4]

    Hashem I E, Carlin C Z, Hagar B G, Colter P C, Bedair S M 2016 J. Appl. Phys. 119 172

    [5]

    Takamoto T, Washio H, Juso H 2014 Proceedings of the 40th IEEE Photovoltaic Specialists Conference Denver, Colorado, USA, June 8-13, 2014 p1

    [6]

    Geisz J F, Kurtz S R, Wanlass M W, Ward J S, Duda A, Friedman D J, Olson J M, McMahon W E, Moriarty T E, Kieh J T, Romero M J, Norman A G, Jones K M 2008 Proceedings of the 33th IEEE Photovoltaic Specialists Conference San Diego, California, USA, May 11-16, 2008 p1

    [7]

    Geisz J F, Kurtz S R, Wanlass M W, Ward J S, Duda A, Friedman D J, Olson J M, McMahon W E, Moriarty T E, Kieh J T, Romero M J, Norman A G, Jones K M 2008 Appl. Phys. Lett. 93 123505

    [8]

    Faine P, Kurtz S R, Olson J M 1990 J. Appl. Phys. 68 339

    [9]

    Luque A, Hegedus S 2011 Handbook of Photovoltaic Science and Engineering (Second Edition) (New York:Wiley) pp323-326

    [10]

    Kurtz S R, Olson J M, Friedman D J, Geisz J F, Bertness K A, Kibbler A E 1999 Proceedings of the Materials Research Society's Spring Meeting San Francisco, California, USA, April 5-9, 1999 p95

    [11]

    Ghannam M Y, Poortmans J, Nijs J F, Mertens R P 2003 Proceedings of the 3rd world Conference on Photovoltaic Energy Conversion Osaka, Japan, May 11-18, 2003 p666

    [12]

    Yamaguchi M, Amano C 1985 J. Appl. Phys. 58 3601

    [13]

    Yamaguchi M, Amano C, Itoh Y 1989 J. Appl. Phys. 66 915

    [14]

    1 Zhang Y, Shan Z F, Cai J J, Wu H Q, Li J C, Chen K X, Lin Z W, Wang X W 2013 Acta Phys. Sin. 62 158802 (in Chinese)[张永, 单智发, 蔡建九, 吴洪清, 李俊承, 陈凯轩, 林志伟, 王向武 2013 62 158802]

    [15]

    Orders P J, Usher B F 1987 Appl. Phys. Lett. 50 980

    [16]

    People R, Bean J C. 1985 Appl. Phys. Lett. 47 322

    [17]

    Matthews J W, Blakeslee A E 1974 J. Cryst. Growth 27 118

    [18]

    Matthews J W, Mader S, Light T B 1970 J. Appl. Phys. 41 3800

    [19]

    Yastrubchak O, Wosinski T, Domagala J Z, Lusakowska E, Figielski T, Pecz B, Toth A L 2004 J. Phys.:Condens. Matter 16 S1

    [20]

    Chang K H, Bhattacharya P K, Gibala R 1989 J. Appl. Phys. 66 2993

  • [1] 高丰, 李欢庆, 宋卓, 赵宇宏. 三模晶体相场法研究应变诱导石墨烯晶界位错演化.  , 2024, 73(24): . doi: 10.7498/aps.73.20241368
    [2] 董烨, 朱特, 宋亚敏, 叶凤娇, 张鹏, 杨启贵, 刘福雁, 陈雨, 曹兴忠. 低活化马氏体钢中位错对氦辐照缺陷的影响.  , 2023, 72(18): 187801. doi: 10.7498/aps.72.20230694
    [3] 张博佳, 安敏荣, 胡腾, 韩腊. 镁中位错和非晶作用机制的分子动力学模拟.  , 2022, 71(14): 143101. doi: 10.7498/aps.71.20212318
    [4] 祁科武, 赵宇宏, 田晓林, 彭敦维, 孙远洋, 侯华. 取向角对小角度非对称倾斜晶界位错运动影响的晶体相场模拟.  , 2020, 69(14): 140504. doi: 10.7498/aps.69.20200133
    [5] 李俊炜, 王祖军, 石成英, 薛院院, 宁浩, 徐瑞, 焦仟丽, 贾同轩. GaInP/GaAs/Ge三结太阳电池不同能量质子辐照损伤模拟.  , 2020, 69(9): 098802. doi: 10.7498/aps.69.20191878
    [6] 祁科武, 赵宇宏, 郭慧俊, 田晓林, 侯华. 温度对小角度对称倾斜晶界位错运动影响的晶体相场模拟.  , 2019, 68(17): 170504. doi: 10.7498/aps.68.20190051
    [7] 杜浩, 倪玉山. 钽、铁、钨三种体心立方金属裂纹的多尺度模拟及韧脆性分析.  , 2016, 65(19): 196201. doi: 10.7498/aps.65.196201
    [8] 连榕海, 梁齐兵, 舒碧芬, 范畴, 吴小龙, 郭银, 汪婧, 杨晴川. 高倍聚光光伏模组中三结太阳电池沿光轴方向光电性能与优化.  , 2016, 65(14): 148801. doi: 10.7498/aps.65.148801
    [9] 邵宇飞, 杨鑫, 李久会, 赵星. Cu刃型扩展位错附近局部应变场的原子模拟研究.  , 2014, 63(7): 076103. doi: 10.7498/aps.63.076103
    [10] 梁齐兵, 舒碧芬, 孙丽娟, 张奇淄, 陈明彪. 三结太阳电池在非均匀光照下光斑强度和覆盖比率的优化研究.  , 2014, 63(16): 168801. doi: 10.7498/aps.63.168801
    [11] 陈丽群, 于涛, 彭小芳, 刘健. 难熔元素钨在NiAl位错体系中的占位及对键合性质的影响.  , 2013, 62(11): 117101. doi: 10.7498/aps.62.117101
    [12] 张永, 单智发, 蔡建九, 吴洪清, 李俊承, 陈凯轩, 林志伟, 王向武. 空间用GaInP/GaAs/In0.3Ga0.7 As(1 eV)倒装三结太阳电池研制.  , 2013, 62(15): 158802. doi: 10.7498/aps.62.158802
    [13] 李联和, 刘官厅. 一维六方准晶中螺形位错与楔形裂纹的相互作用.  , 2012, 61(8): 086103. doi: 10.7498/aps.61.086103
    [14] 肖文波, 何兴道, 高益庆. 线偏振光电位移矢量振动方向对InGaP/InGaAs/Ge三结太阳电池开路电压的影响.  , 2012, 61(10): 108802. doi: 10.7498/aps.61.108802
    [15] 周春兰, 励旭东, 王文静, 赵雷, 李海玲, 刁宏伟, 曹晓宁. 氧化随机织构硅表面对单晶硅太阳电池性能的影响研究.  , 2011, 60(3): 038201. doi: 10.7498/aps.60.038201
    [16] 张曾, 张荣, 谢自力, 刘斌, 修向前, 李弋, 傅德颐, 陆海, 陈鹏, 韩平, 郑有炓, 汤晨光, 陈涌海, 王占国. 厚度对MOCVD生长InN薄膜位错特性与光电性质的影响.  , 2009, 58(5): 3416-3420. doi: 10.7498/aps.58.3416
    [17] 方步青, 卢果, 张广财, 许爱国, 李英骏. 铜晶体中类层错四面体的结构及其演化.  , 2009, 58(7): 4862-4871. doi: 10.7498/aps.58.4862
    [18] 孙 蔚, 王清周, 韩福生. 石墨颗粒/CuAlMn形状记忆合金复合材料中的位错内耗峰.  , 2007, 56(2): 1020-1026. doi: 10.7498/aps.56.1020
    [19] 江慧丰, 张青川, 陈学东, 范志超, 陈忠家, 伍小平. 位错与溶质原子间动态相互作用的数值模拟研究.  , 2007, 56(6): 3388-3392. doi: 10.7498/aps.56.3388
    [20] 罗诗裕, 邵明珠, 韦洛霞, 刘曾荣. 位错动力学与系统的全局分叉.  , 2004, 53(6): 1940-1945. doi: 10.7498/aps.53.1940
计量
  • 文章访问数:  5743
  • PDF下载量:  228
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-30
  • 修回日期:  2016-10-25
  • 刊出日期:  2017-02-05

/

返回文章
返回
Baidu
map