搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含石墨烯分界面有耗分层介质的传播矩阵

王飞 魏兵

引用本文:
Citation:

含石墨烯分界面有耗分层介质的传播矩阵

王飞, 魏兵

Propagation matrix for lossy stratified medium containing graphene sheet

Wang Fei, Wei Bing
PDF
HTML
导出引用
  • 给出一种适用于含导电界面的有耗分层介质的传播矩阵方法. 利用相位匹配原理给出斜入射时有耗介质波矢量的实部和虚部, 二者方向不同使得在介质中传播非均匀平面波. 根据边界条件, 推导了跨越石墨烯界面的传播矩阵, 以及“无限薄”石墨烯层的反透射系数解析式. 最终将传播矩阵方法推广应用于含石墨烯界面的有耗分层介质情形, 可用于快速解析分析分层介质与导电界面复合结构的反透射和电波传播特性.
    In this paper, a propagation matrix method for lossy layered medium with conductive interfaces is presented. Firstly, on the basis of phase matching principle, an approach to calculating the real and imaginary part of wave vector in a lossy layered medium is given for the case of oblique incident plane electromagnetic wave. Since the direction of real and imaginary part of wave vector are different, the plane wave propagating in lossy dielectric layers is inhomogeneous, which extends the traditional propagation matrix method and makes it suitable for the complex lossy medium. Then, the propagation matrix across graphene interface is deduced by using the electromagnetic field boundary conditions, and the analytical expression of the reflection and transmission coefficient for “infinite thin” graphene layer are given. Finally, the propagation matrix of lossy layered medium with conductive interface is obtained by embedding graphene interface into the layered medium, which can be used for fast analyzing the reflection, transmission and propagation of plane wave in composite structure of layered medium and conductive interface. The validity of the proposed method is demonstrated by calculating the single-layered shielding effectiveness of grapheme. The effects of graphene coating on the reflection, transmission and absorption of plane wave in half-space medium and one-dimensional photonic crystal are also investigated. The results show that the graphene layer can enhance surface reflection and optical absorption.
      通信作者: 王飞, wfei79@163.com
    • 基金项目: 国家自然科学基金(批准号: 61401344, 61571348)和高等学校学科创新引智计划(批准号: B17035)资助的课题
      Corresponding author: Wang Fei, wfei79@163.com
    • Funds: Project supported by the National Natural Scientific Foundation of China (Grant Nos. 61401344, 61571348) and the Overseas Expertise Introduction Project for Discipline Innovation, China (Grant No. B17035)
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsove A A 2004 Science 306 666Google Scholar

    [2]

    Geim A K 2009 Science 324 1530Google Scholar

    [3]

    Sensale-Rodriguez B, Yan R, Kelly M, Fang T, Tahy K, Hwang W S, Jena D, Liu L, Xing H G 2012 Nature Commun. 3 780Google Scholar

    [4]

    Alaee R, Farhat M, Rockstuhl C, Lederer F 2012 Opt. Express 20 28017Google Scholar

    [5]

    Fallahi A, Perruisseau-Carrier J 2012 Phys. Rev. B 86 195408Google Scholar

    [6]

    Sensale-Rodriguez B, Yan R, Rafique S, Zhu M, Li W, Liang X, Gundlach D, Protasenko V, Kelly M M, Jena D, Liu L, Xing H G 2012 Nano Lett. 12 4518Google Scholar

    [7]

    Fu M X, Zhang Y 2013 JECT 11 352

    [8]

    Lee S H, Choi M, Kim T T, Lee S, Liu M, Yin X, Choi H K, Lee S S, Choi C G, Choi S Y, Zhang X, Min B 2012 Nat. Mater. 11 936

    [9]

    Zuo Z G, Wang P, Ling F R, Liu J S, Yao J Q 2013 Chin. Phys. B 22 097304Google Scholar

    [10]

    张玉萍, 张洪艳, 尹贻恒, 刘陵玉, 张晓, 高营, 张会云 2012 61 047803Google Scholar

    Zhang Y P, Zhang H Y, Yin Y H, Liu L Y, Zhang X, Gao Y, Zhang H Y 2012 Acta Phys. Sin. 61 047803Google Scholar

    [11]

    Zhu X L, Yan W, Jepsen P U, Hansen O, Mortensen N A Xiao S S 2013 Appl. Phys. Lett. 102 131101Google Scholar

    [12]

    Pomar J L G, Alexey Y N, Luis M M 2013 ACS Nano 7 4988Google Scholar

    [13]

    Thongrattanasiri S, Koppens F H L, de Abajo F J G 2012 Phys. Rev. Lett. 108 047401Google Scholar

    [14]

    Ferreira A, Peres N M R, Ribeiro R M, Stauber T 2012 Phys. Rev. B 85 115438Google Scholar

    [15]

    Tian Y C, Jia W, Ren P W, Fan C Z 2018 Chin. Phys. B 27 124205Google Scholar

    [16]

    Jia W, Ren P W, Fan C Z, Tian Y C 2019 Chin. Phys. B 28 026102Google Scholar

    [17]

    Liu J T, Liu N H, Li J, Li X J, Huang J H 2012 Appl. Phys. Lett. 101 052104Google Scholar

    [18]

    Peres N M R, Bludov Y V 2013 EPL 101 58002Google Scholar

    [19]

    谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛 2014 63 057803Google Scholar

    Xie L Y, Xiao W B, Huang G Q, Hu A R, Liu J T 2014 Acta Phys. Sin. 63 057803Google Scholar

    [20]

    Zhang H J, Zheng G G, Chen Y Y 2018 Chin. Phys. Lett. 35 038102Google Scholar

    [21]

    Lovat G 2012 IEEE Trans. Electromagn. Compat. 54 101Google Scholar

    [22]

    葛德彪, 魏兵 2011 电磁波理论 (北京: 科学出版社) 第32, 56−65页

    Ge D B, Wei B 2011 Electromagnetic Wave Theory (Beijing: Science Press) pp32, 56−65 (in Chinese)

    [23]

    George W H 2008 J. Appl. Phys. 103 064302Google Scholar

    [24]

    孙旺, 李粮生, 张景, 殷红成 2018 雷达学报 7 67Google Scholar

    Sun W, Li L S, Zhang J, Yin H C 2018 J. Radars 7 67Google Scholar

  • 图 1  分层介质

    Fig. 1.  Stratified medium.

    图 2  石墨烯电导率和SE (a) 电导率实虚部; (b) SE

    Fig. 2.  Graphene conductivity and shielding effectiveness: (a) Real and imaginary parts of conductivity; (b) SE.

    图 3  石墨烯单层的反射和透射系数模值 (a) TE模; (b) TM模

    Fig. 3.  Modulus of reflective and transmittance coefficients of a graphene sheet:(a) TE mode; (b) TM mode.

    图 4  含石墨烯涂层CdTe半空间的反透射系数模值(TE模) (a) 反射系数; (b) 透射系数

    Fig. 4.  Modulus of reflective and transmittance coefficients of CdTe half-space containing graphene coating (TE mode): (a) Reflective coefficient; (b) transmittance coefficient.

    图 5  含石墨烯涂层CdTe半空间的反透射系数模值(TM模) (a) 反射系数; (b) 透射系数

    Fig. 5.  Modulus of reflective and transmittance coefficients of CdTe half-space containing graphene coating (TM mode): (a) Reflective coefficient; (b) transmittance coefficient.

    图 6  CdTe半空间的反透射光场(TE模) (a) 无石墨烯涂层; (b) 含石墨烯涂层

    Fig. 6.  Optical field of reflection and transmission coefficients of CdTe half-space (TE mode): (a) Without graphene coating; (b) with graphene coating.

    图 7  CdTe半空间的反透射光场(TM模) (a) 无石墨烯涂层; (b) 含石墨烯涂层

    Fig. 7.  Optical field of reflection and transmission coefficients of CdTe half-space (TM mode): (a) Without graphene coating; (b) with graphene coating.

    图 8  Si/SiO2周期结构型1DPC

    Fig. 8.  Si/SiO2 1DPC with periodic structure.

    图 9  含石墨烯涂层Si/SiO2周期结构1DPC的反透射系数 (a) 反射系数; (b) 透射系数

    Fig. 9.  Modulus of reflective and transmittance coefficients of Si/SiO2 1DPC containing graphene sheet: (a) Reflective coefficient; (b) transmittance coefficient.

    图 10  含石墨烯界面Si/SiO2周期结构1DPC的吸收率

    Fig. 10.  Absorbance of Si/SiO2 1DPC containing graphene sheet.

    图 11  含石墨烯涂层Si/SiO2周期结构1DPC的吸收率(TE模) (a) 无涂层; (b) 表面涂层; (c) 底层涂层

    Fig. 11.  Contour plots of the absorbance of the Si/SiO2 1DPC as a function of the light frequency and the incident angles for the TE mode: (a) Without graphene sheet; (b) graphene sheet on the top; (c) graphene sheet on the bottom.

    图 12  含石墨烯涂层Si/SiO2周期结构1DPC的吸收率(TM模) (a) 无涂层; (b) 表面涂层; (c) 底层涂层

    Fig. 12.  Contour plots of the absorbance of the Si/SiO2 1DPC as a function of the light frequency and the incident angles for the TE mode: (a) Without graphene sheet; (b) graphene sheet on the top; (c) graphene sheet on the bottom.

    Baidu
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsove A A 2004 Science 306 666Google Scholar

    [2]

    Geim A K 2009 Science 324 1530Google Scholar

    [3]

    Sensale-Rodriguez B, Yan R, Kelly M, Fang T, Tahy K, Hwang W S, Jena D, Liu L, Xing H G 2012 Nature Commun. 3 780Google Scholar

    [4]

    Alaee R, Farhat M, Rockstuhl C, Lederer F 2012 Opt. Express 20 28017Google Scholar

    [5]

    Fallahi A, Perruisseau-Carrier J 2012 Phys. Rev. B 86 195408Google Scholar

    [6]

    Sensale-Rodriguez B, Yan R, Rafique S, Zhu M, Li W, Liang X, Gundlach D, Protasenko V, Kelly M M, Jena D, Liu L, Xing H G 2012 Nano Lett. 12 4518Google Scholar

    [7]

    Fu M X, Zhang Y 2013 JECT 11 352

    [8]

    Lee S H, Choi M, Kim T T, Lee S, Liu M, Yin X, Choi H K, Lee S S, Choi C G, Choi S Y, Zhang X, Min B 2012 Nat. Mater. 11 936

    [9]

    Zuo Z G, Wang P, Ling F R, Liu J S, Yao J Q 2013 Chin. Phys. B 22 097304Google Scholar

    [10]

    张玉萍, 张洪艳, 尹贻恒, 刘陵玉, 张晓, 高营, 张会云 2012 61 047803Google Scholar

    Zhang Y P, Zhang H Y, Yin Y H, Liu L Y, Zhang X, Gao Y, Zhang H Y 2012 Acta Phys. Sin. 61 047803Google Scholar

    [11]

    Zhu X L, Yan W, Jepsen P U, Hansen O, Mortensen N A Xiao S S 2013 Appl. Phys. Lett. 102 131101Google Scholar

    [12]

    Pomar J L G, Alexey Y N, Luis M M 2013 ACS Nano 7 4988Google Scholar

    [13]

    Thongrattanasiri S, Koppens F H L, de Abajo F J G 2012 Phys. Rev. Lett. 108 047401Google Scholar

    [14]

    Ferreira A, Peres N M R, Ribeiro R M, Stauber T 2012 Phys. Rev. B 85 115438Google Scholar

    [15]

    Tian Y C, Jia W, Ren P W, Fan C Z 2018 Chin. Phys. B 27 124205Google Scholar

    [16]

    Jia W, Ren P W, Fan C Z, Tian Y C 2019 Chin. Phys. B 28 026102Google Scholar

    [17]

    Liu J T, Liu N H, Li J, Li X J, Huang J H 2012 Appl. Phys. Lett. 101 052104Google Scholar

    [18]

    Peres N M R, Bludov Y V 2013 EPL 101 58002Google Scholar

    [19]

    谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛 2014 63 057803Google Scholar

    Xie L Y, Xiao W B, Huang G Q, Hu A R, Liu J T 2014 Acta Phys. Sin. 63 057803Google Scholar

    [20]

    Zhang H J, Zheng G G, Chen Y Y 2018 Chin. Phys. Lett. 35 038102Google Scholar

    [21]

    Lovat G 2012 IEEE Trans. Electromagn. Compat. 54 101Google Scholar

    [22]

    葛德彪, 魏兵 2011 电磁波理论 (北京: 科学出版社) 第32, 56−65页

    Ge D B, Wei B 2011 Electromagnetic Wave Theory (Beijing: Science Press) pp32, 56−65 (in Chinese)

    [23]

    George W H 2008 J. Appl. Phys. 103 064302Google Scholar

    [24]

    孙旺, 李粮生, 张景, 殷红成 2018 雷达学报 7 67Google Scholar

    Sun W, Li L S, Zhang J, Yin H C 2018 J. Radars 7 67Google Scholar

  • [1] 王伟华. 二维有限元方法研究石墨烯环中磁等离激元.  , 2023, 72(8): 087301. doi: 10.7498/aps.72.20222467
    [2] 李慧慧, 薛文瑞, 李宁, 杜易达, 李昌勇. 涂覆石墨烯的嵌套偏心空心圆柱的椭圆形电介质波导的模式特性.  , 2022, 71(10): 108101. doi: 10.7498/aps.71.20212321
    [3] 王飞, 魏兵. 电磁偏置各向异性石墨烯界面的传播矩阵.  , 2021, 70(1): 014102. doi: 10.7498/aps.70.20201089
    [4] 董慧莹, 秦晓茹, 薛文瑞, 程鑫, 李宁, 李昌勇. 涂覆石墨烯的非对称椭圆电介质纳米并行线的模式分析.  , 2020, 69(23): 238102. doi: 10.7498/aps.69.20201041
    [5] 郭伟玲, 邓杰, 王嘉露, 王乐, 邰建鹏. 具有石墨烯/铟锑氧化物复合透明电极的GaN发光二极管.  , 2019, 68(24): 247303. doi: 10.7498/aps.68.20190983
    [6] 程鑫, 薛文瑞, 卫壮志, 董慧莹, 李昌勇. 涂覆石墨烯的椭圆形电介质纳米线光波导的模式特性分析.  , 2019, 68(5): 058101. doi: 10.7498/aps.68.20182090
    [7] 卫壮志, 薛文瑞, 彭艳玲, 程鑫, 李昌勇. 基于涂覆石墨烯的三根电介质纳米线的THz波导的模式特性分析.  , 2018, 67(10): 108101. doi: 10.7498/aps.67.20180036
    [8] 彭艳玲, 薛文瑞, 卫壮志, 李昌勇. 涂覆石墨烯的非对称并行电介质纳米线波导的模式特性分析.  , 2018, 67(3): 038102. doi: 10.7498/aps.67.20172016
    [9] 秦志辉. 类石墨烯锗烯研究进展.  , 2017, 66(21): 216802. doi: 10.7498/aps.66.216802
    [10] 俎凤霞, 张盼盼, 熊伦, 殷勇, 刘敏敏, 高国营. 以石墨烯为电极的有机噻吩分子整流器的设计及电输运特性研究.  , 2017, 66(9): 098501. doi: 10.7498/aps.66.098501
    [11] 王飞, 魏兵. 分层有耗手征介质中斜入射电磁波的传播矩阵.  , 2017, 66(6): 064101. doi: 10.7498/aps.66.064101
    [12] 金芹, 董海明, 韩奎, 王雪峰. 石墨烯超快动态光学性质.  , 2015, 64(23): 237801. doi: 10.7498/aps.64.237801
    [13] 卢晓波, 张广宇. 石墨烯莫尔超晶格.  , 2015, 64(7): 077305. doi: 10.7498/aps.64.077305
    [14] 邓新华, 刘江涛, 袁吉仁, 王同标. 全新的电导率特征矩阵方法及其在石墨烯THz频率光学特性上的应用.  , 2015, 64(5): 057801. doi: 10.7498/aps.64.057801
    [15] 乔文涛, 龚健, 张利伟, 王勤, 王国东, 廉书鹏, 陈鹏辉, 孟威威. 梳状波导结构中石墨烯表面等离子体的传播性质.  , 2015, 64(23): 237301. doi: 10.7498/aps.64.237301
    [16] 叶振强, 曹炳阳, 过增元. 石墨烯的声子热学性质研究.  , 2014, 63(15): 154704. doi: 10.7498/aps.63.154704
    [17] 谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛. 光子晶体增强石墨烯THz吸收.  , 2014, 63(5): 057803. doi: 10.7498/aps.63.057803
    [18] 张保磊, 王家序, 肖科, 李俊阳. 石墨烯-纳米探针相互作用有限元准静态计算.  , 2014, 63(15): 154601. doi: 10.7498/aps.63.154601
    [19] 张玉萍, 刘陵玉, 陈琦, 冯志红, 王俊龙, 张晓, 张洪艳, 张会云. 具有分离门电抽运石墨烯中电子-空穴等离子体的冷却效应.  , 2013, 62(9): 097202. doi: 10.7498/aps.62.097202
    [20] 邓伟胤, 朱瑞, 邓文基. 有限尺寸石墨烯的电子态.  , 2013, 62(8): 087301. doi: 10.7498/aps.62.087301
计量
  • 文章访问数:  7052
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-28
  • 修回日期:  2019-09-29
  • 上网日期:  2019-11-27
  • 刊出日期:  2019-12-01

/

返回文章
返回
Baidu
map