搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钝感高能炸药三氨基三硝基苯高温高压下热力学性质的分子动力学模拟研究

范航 聂福德 龙瑶 陈军

引用本文:
Citation:

钝感高能炸药三氨基三硝基苯高温高压下热力学性质的分子动力学模拟研究

范航, 聂福德, 龙瑶, 陈军

A molecular dynamics simulation of thermodynamic properties of 1, 3, 5-triamino-2, 4, 6-trinitrobenzene under high pressure and high temperature

Fan Hang, Nie Fu-De, Long Yao, Chen Jun
PDF
导出引用
  • 热力学性质是钝感高能炸药1, 3, 5-三氨基-2, 4, 6-三硝基苯(TATB)爆轰性质和安全性评估分析的重要参数. 由于结构的复杂性, TATB炸药尚缺乏系统的实验和理论计算结果. 结合全原子力场和分子动力学的方法, 本文系统研究了不同温度和压力条件下TATB的力学性质和热力学参数, 得到了弹性模量、德拜温度等随温度、压力的变化情况, 并与实验进行了对比分析. 结果表明: 在 0-50 GPa外部压力下, TATB晶体保持力学稳定, 弹性常数和弹性模量随压力升高而增大, 各向异性程度随压力升高而减小, 泊松比和延展性则受压力的影响较小; 随温度的升高, TATB的力学稳定性逐渐下降, 有发生力学失稳的可能, 各弹性常数随温度升高而逐渐减小, 各向异性程度也随之减小; TATB 的声速和德拜温度同样随着压力升高而增大, 平均声速从0 GPa下的1833 m/s, 增加到10 GPa 下的3143 m/s, 德拜温度由0 GPa下的254 K增加到10 GPa的587 K. TATB 热膨胀系数的计算表明, 在200-500 K 温度常压情况下, 其体热膨胀系数为35.910-5 K-1, 与实验数据符合较好.
    Equation of states and thermodynamic properties of insensitive high explosive 1, 3, 5-triamino-2, 4, 6-trinitrobenzene (TATB) are investigated by using molecular dynamics simulation, where an all-atom force field for TATB developed by Richard H. Gee and isothermal-isobaric molecular dynamics (NPT-MD) methods are used. Results obtained include thermal expansion coefficient, elastic constants, tensile modulus, and debye frequency under high temperature and high pressure. The volume coefficient of thermal expansion for crystalline TATB is calculated in a temperature range of 200 to 500 K and at atmospheric pressure. The result, 35.910-5 K-1, is in general agreements with the experimental results. Results of elastic constants show that the crystalline TATB is an orthotropic material. The calculated elastic constants decrease with increasing temperature in the range from 0 to 450 K, while increase as the pressure increases from 0 to 50 GPa. And the bulk modulus at 300 K is 11.32 GPa, which is in good agreement with the available experimental results. Results obtained above have been compared with available experimental data, and also discussed in relation to the previous calculations. The above results are better than existing ones gained by others. In addition, the elastic anisotropy becomes lower with increasing temperature or pressure. As the temperature goes up to 400 K, the lattice becomes unstable. The sound speed and Debye frequency are calculated by using the data of elastic constants at different pressures. This provides a theoretical basis to calculate the anisotropic thermal conductivity for crystalline TATB.
      通信作者: 陈军, jun_chen@iapcm.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11572053)、国家自然科学基金委员会与中国工程物理研究院联合基金(批准号: U1530262)、中国工程物理研究院科学基金(批准号: 2014 A0101004)和国防科工局国防基础科研项目(批准号: B1520132013)资助的课题.
      Corresponding author: Chen Jun, jun_chen@iapcm.ac.cn
    • Funds: Project supported by the National Natural Science Foudation of China (Grant No. 11572053), the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1530262), the Development Foundation of China Academy of Engineering Physics (Grant No. 2014 A0101004), and the Defence Industrial Technology Development Program, China (Grant No. B1520132013).
    [1]

    Voigt-Martin I G, Li G, Yakimanski A Schulz G, Jens Wolff J J 1996 J. Am. Chem. Soc. 118 12830

    [2]

    Brill T B, James K J 1993 Chem. Rev. 93 2667

    [3]

    Zyss J, Ledoux I 1994 Chem. Rev. 94 77

    [4]

    Boddu V M Viswanath D S, Ghosh T K, Damavarapu R 2010 J. Hazard. Mater. 181 1

    [5]

    Gee R H, Roszak S, Balasubramanian K, Fried L E 2004 J. Chem. Phys. 120 7059

    [6]

    Guo F, Zhang H, Hu H Q, Cheng X L 2014 Chin. Phys. B 23 046501

    [7]

    Wang J R, Zhu J, Hao Y J, Ji G F, Xiang G, Zou Y C 2014 Acta Phys. Sin. 63 186401 (in Chinese) [王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹阳春 2014 63 186401]

    [8]

    Stevens L L, Velisavljevic N, Hooks D E, Dattelbaum D M 2008 Propell Explos. Pyrot. 33 286

    [9]

    Rykounov A A 2015 J. Appl. Phys. 117 215901

    [10]

    Bedrov D, Borodin O, Smith G D, Sewell T D, Dattelbaum D M 2009 J. Chem. Phys. 131 224703

    [11]

    Kroonblawd M P, Sewell T D 2013 J. Chem. Phys. 139 074503

    [12]

    Kroonblawd M P, Sewell T D 2014 J. Chem. Phys. 141 184501

    [13]

    Xiao J J, Gu C G, Fang G Y, Zhu W, Xiao H M 2005 Acta Chim. Sin. 63 439 (in Chinese) [肖继军, 谷成刚, 方国勇, 朱伟, 肖鹤鸣 2005 化学学报 63 439]

    [14]

    Zhu W, Xiao J J, Huang H, Ma X F, Li J S, Xiao H M 2007 J. Nanjing Univ. Sci. Tech. 31 243 (in Chinese) [朱伟, 肖继军, 黄辉, 马秀芳, 李金山, 肖鹤鸣 2007 南京理工大学学报 31 243]

    [15]

    Sun H 1998 J. Phys. Chem. B 102, 7338

    [16]

    Qi X F, Zhang X H, Song Z W, Liu P, Li J Z, Liu M 2012 Chin. Chem. Propell. Poly. Mater. 10 37 (in Chinese) [齐晓飞, 张晓宏, 宋振伟, 刘鹏, 李吉祯, 刘萌 2012 化学推进剂与高分子材料 10 37]

    [17]

    Hagler A T, Lifson S, Dauber P 1979 J. Am. Chem. Soc. 101 5122

    [18]

    Mayo S L Olafson B D Goddard III W A 1990 J. Phys. Chem. 94 8897

    [19]

    Rappe A K, Casewit C J, Colwell K S Goddard III W A, Skiff W M 1992 J. Am. Chem. Soc. 114 10024

    [20]

    Zhang C Y, Wang X C Huang H 2008 J. Am. Chem. Soc. 130 8359

    [21]

    Neeraj R, Divesh B 2008 J. Chem. Phys. 129 194510

    [22]

    Cheng T 2009 M. D. Dissertation (Shanghai: Shanghai Jiao Tong University) (in Chinese) [程涛 2009 硕士学位论文(上海: 上海交通大学)]

    [23]

    Jin Z, Liu J, Wang L L, Cao F L, Sun H 2014 Acta Phys. Chim. Sin. 30 654 (in Chinese) [金钊, 刘建, 王丽莉, 曹风雷, 孙淮 2014 物理化学学报 30 654]

    [24]

    Plimpton S 1995 J. Comp. Phys. 117 1

    [25]

    Nose S 1984 Mol. Phys. 52 255

    [26]

    Hoover W G 1985 Phys. Rev. A 31 1695

    [27]

    Wang B, Liu Y, Ye J W 2012 Acta Phys. Sin. 61 186501 (in Chinese) [王斌, 刘颖, 叶金文 2012 61 186501]

    [28]

    Marmier A, Lethbridge Z A D, Walton R I, Smith C W, Parker S C, Evans K E 2010 Comp. Phys. Comm. 181 2102

    [29]

    Wang Z C 1992 Thermodynamics Statistic Mechanics (Beijing: Higher Education Press) p340 (in Chinese) [汪志诚 1992 热力学统计物理 (北京:高等教育出版社) 第340页]

    [30]

    Lu X S, Liang J K 1981 Acta Phys. Sin. 30 1361 (in Chinese) [陆学善, 梁敬魁 1981 30 1361]

    [31]

    Sin'ko G V, Smirnov N A 2002 J. Phys.: Condens. Matter 14 6989

    [32]

    Long Y, Liu Y G, Nie F D, Chen J 2012 Philos. Mag. 92 1023

    [33]

    Gibbs T R, Popolato A 1980 LASL Explosive Property Data (Berkeley: University of California Press)

    [34]

    Kolb J R, Rizzo H F 1979 Propell. Explos. Pyrot. 4 10

    [35]

    Pastine D J, Bernecker R R 1974 J. Appl. Phys. 45 4458

    [36]

    Olinger B, Cady H 1976 6th Symposium (International) on Detonation Coronado, California, USA August 24-27, 1976 224

    [37]

    Byrd E F C, Rice B M 2007 J. Phys. Chem. C 111 2787

    [38]

    Wu Q, Zhu W H, Xiao H M 2014 RSC Adv. 4 53149

    [39]

    Chellappa R, Dattelbaum D 2015 19th Biennial Conference of the APS Topical Group on Shock Compression of Condensed Matter Florida, USA June 14-19, 2015

    [40]

    Coleburn N L, Liddiard T P 1966 J. Chem. Phys 44 1929

    [41]

    Craig B G 1978 Los Alamos Scientific Laboratory Private Communication

    [42]

    Guo F, Zhang H, Hu H Q, Cheng X L, Zhang L Y 2015 Chin. Phys. B 24 118201

    [43]

    Menikoff R, Swell T D 2001 Technical Report LA-UR-00-3608-rev Los Alamos National Laboratory

    [44]

    Born M, Huang K 1989 Dynamical Theory of Crystal Lattices (Beijing: Beijing Univiersity Press) p151 (in Chinese) [波恩, 黄昆 1989 晶格动力学理论 (北京: 北京大学出版社)第151页]

    [45]

    Chen J, Long Y, Chen D Q 2013 Chin. J. High Pressure Phys. 27 199 (in Chinese) [陈军, 龙瑶, 陈栋泉 2013 高压 27 199]

  • [1]

    Voigt-Martin I G, Li G, Yakimanski A Schulz G, Jens Wolff J J 1996 J. Am. Chem. Soc. 118 12830

    [2]

    Brill T B, James K J 1993 Chem. Rev. 93 2667

    [3]

    Zyss J, Ledoux I 1994 Chem. Rev. 94 77

    [4]

    Boddu V M Viswanath D S, Ghosh T K, Damavarapu R 2010 J. Hazard. Mater. 181 1

    [5]

    Gee R H, Roszak S, Balasubramanian K, Fried L E 2004 J. Chem. Phys. 120 7059

    [6]

    Guo F, Zhang H, Hu H Q, Cheng X L 2014 Chin. Phys. B 23 046501

    [7]

    Wang J R, Zhu J, Hao Y J, Ji G F, Xiang G, Zou Y C 2014 Acta Phys. Sin. 63 186401 (in Chinese) [王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹阳春 2014 63 186401]

    [8]

    Stevens L L, Velisavljevic N, Hooks D E, Dattelbaum D M 2008 Propell Explos. Pyrot. 33 286

    [9]

    Rykounov A A 2015 J. Appl. Phys. 117 215901

    [10]

    Bedrov D, Borodin O, Smith G D, Sewell T D, Dattelbaum D M 2009 J. Chem. Phys. 131 224703

    [11]

    Kroonblawd M P, Sewell T D 2013 J. Chem. Phys. 139 074503

    [12]

    Kroonblawd M P, Sewell T D 2014 J. Chem. Phys. 141 184501

    [13]

    Xiao J J, Gu C G, Fang G Y, Zhu W, Xiao H M 2005 Acta Chim. Sin. 63 439 (in Chinese) [肖继军, 谷成刚, 方国勇, 朱伟, 肖鹤鸣 2005 化学学报 63 439]

    [14]

    Zhu W, Xiao J J, Huang H, Ma X F, Li J S, Xiao H M 2007 J. Nanjing Univ. Sci. Tech. 31 243 (in Chinese) [朱伟, 肖继军, 黄辉, 马秀芳, 李金山, 肖鹤鸣 2007 南京理工大学学报 31 243]

    [15]

    Sun H 1998 J. Phys. Chem. B 102, 7338

    [16]

    Qi X F, Zhang X H, Song Z W, Liu P, Li J Z, Liu M 2012 Chin. Chem. Propell. Poly. Mater. 10 37 (in Chinese) [齐晓飞, 张晓宏, 宋振伟, 刘鹏, 李吉祯, 刘萌 2012 化学推进剂与高分子材料 10 37]

    [17]

    Hagler A T, Lifson S, Dauber P 1979 J. Am. Chem. Soc. 101 5122

    [18]

    Mayo S L Olafson B D Goddard III W A 1990 J. Phys. Chem. 94 8897

    [19]

    Rappe A K, Casewit C J, Colwell K S Goddard III W A, Skiff W M 1992 J. Am. Chem. Soc. 114 10024

    [20]

    Zhang C Y, Wang X C Huang H 2008 J. Am. Chem. Soc. 130 8359

    [21]

    Neeraj R, Divesh B 2008 J. Chem. Phys. 129 194510

    [22]

    Cheng T 2009 M. D. Dissertation (Shanghai: Shanghai Jiao Tong University) (in Chinese) [程涛 2009 硕士学位论文(上海: 上海交通大学)]

    [23]

    Jin Z, Liu J, Wang L L, Cao F L, Sun H 2014 Acta Phys. Chim. Sin. 30 654 (in Chinese) [金钊, 刘建, 王丽莉, 曹风雷, 孙淮 2014 物理化学学报 30 654]

    [24]

    Plimpton S 1995 J. Comp. Phys. 117 1

    [25]

    Nose S 1984 Mol. Phys. 52 255

    [26]

    Hoover W G 1985 Phys. Rev. A 31 1695

    [27]

    Wang B, Liu Y, Ye J W 2012 Acta Phys. Sin. 61 186501 (in Chinese) [王斌, 刘颖, 叶金文 2012 61 186501]

    [28]

    Marmier A, Lethbridge Z A D, Walton R I, Smith C W, Parker S C, Evans K E 2010 Comp. Phys. Comm. 181 2102

    [29]

    Wang Z C 1992 Thermodynamics Statistic Mechanics (Beijing: Higher Education Press) p340 (in Chinese) [汪志诚 1992 热力学统计物理 (北京:高等教育出版社) 第340页]

    [30]

    Lu X S, Liang J K 1981 Acta Phys. Sin. 30 1361 (in Chinese) [陆学善, 梁敬魁 1981 30 1361]

    [31]

    Sin'ko G V, Smirnov N A 2002 J. Phys.: Condens. Matter 14 6989

    [32]

    Long Y, Liu Y G, Nie F D, Chen J 2012 Philos. Mag. 92 1023

    [33]

    Gibbs T R, Popolato A 1980 LASL Explosive Property Data (Berkeley: University of California Press)

    [34]

    Kolb J R, Rizzo H F 1979 Propell. Explos. Pyrot. 4 10

    [35]

    Pastine D J, Bernecker R R 1974 J. Appl. Phys. 45 4458

    [36]

    Olinger B, Cady H 1976 6th Symposium (International) on Detonation Coronado, California, USA August 24-27, 1976 224

    [37]

    Byrd E F C, Rice B M 2007 J. Phys. Chem. C 111 2787

    [38]

    Wu Q, Zhu W H, Xiao H M 2014 RSC Adv. 4 53149

    [39]

    Chellappa R, Dattelbaum D 2015 19th Biennial Conference of the APS Topical Group on Shock Compression of Condensed Matter Florida, USA June 14-19, 2015

    [40]

    Coleburn N L, Liddiard T P 1966 J. Chem. Phys 44 1929

    [41]

    Craig B G 1978 Los Alamos Scientific Laboratory Private Communication

    [42]

    Guo F, Zhang H, Hu H Q, Cheng X L, Zhang L Y 2015 Chin. Phys. B 24 118201

    [43]

    Menikoff R, Swell T D 2001 Technical Report LA-UR-00-3608-rev Los Alamos National Laboratory

    [44]

    Born M, Huang K 1989 Dynamical Theory of Crystal Lattices (Beijing: Beijing Univiersity Press) p151 (in Chinese) [波恩, 黄昆 1989 晶格动力学理论 (北京: 北京大学出版社)第151页]

    [45]

    Chen J, Long Y, Chen D Q 2013 Chin. J. High Pressure Phys. 27 199 (in Chinese) [陈军, 龙瑶, 陈栋泉 2013 高压 27 199]

  • [1] 陈晶晶, 赵洪坡, 王葵, 占慧敏, 罗泽宇. SiC基底覆多层石墨烯力学强化性能分子动力学模拟.  , 2024, 73(10): 109601. doi: 10.7498/aps.73.20232031
    [2] 张宇航, 李孝宝, 詹春晓, 王美芹, 浦玉学. 单层MoSSe力学性质的分子动力学模拟研究.  , 2023, 72(4): 046201. doi: 10.7498/aps.72.20221815
    [3] 第伍旻杰, 胡晓棉. 单晶Ce冲击相变的分子动力学模拟.  , 2020, 69(11): 116202. doi: 10.7498/aps.69.20200323
    [4] 陈玉江, 江五贵, 林演文, 郑盼. 一种新型的三壁碳纳米管螺旋振荡器:分子动力学模拟.  , 2020, 69(22): 228801. doi: 10.7498/aps.69.20200821
    [5] 范航, 何冠松, 杨志剑, 聂福德, 陈鹏万. 三氨基三硝基苯基高聚物粘结炸药热力学性质的理论计算研究.  , 2019, 68(10): 106201. doi: 10.7498/aps.68.20190075
    [6] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟.  , 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [7] 董琪琪, 胡海豹, 陈少强, 何强, 鲍路瑶. 水滴撞击结冰过程的分子动力学模拟.  , 2018, 67(5): 054702. doi: 10.7498/aps.67.20172174
    [8] 张宝玲, 宋小勇, 侯氢, 汪俊. 高密度氦相变的分子动力学研究.  , 2015, 64(1): 016202. doi: 10.7498/aps.64.016202
    [9] 陈基, 冯页新, 李新征, 王恩哥. 基于路径积分分子动力学与热力学积分方法的高压氢自由能计算.  , 2015, 64(18): 183101. doi: 10.7498/aps.64.183101
    [10] 王成龙, 王庆宇, 张跃, 李忠宇, 洪兵, 苏折, 董良. SiC/C界面辐照性能的分子动力学研究.  , 2014, 63(15): 153402. doi: 10.7498/aps.63.153402
    [11] 常旭. 多层石墨烯的表面起伏的分子动力学模拟.  , 2014, 63(8): 086102. doi: 10.7498/aps.63.086102
    [12] 周化光, 林鑫, 王猛, 黄卫东. Cu固液界面能的分子动力学计算.  , 2013, 62(5): 056803. doi: 10.7498/aps.62.056803
    [13] 马天慧, 庄志萍, 任玉兰. LiBX2 (B=Ga, In; X= S, Se, Te)光学性质与力学性质的第一性原理计算.  , 2012, 61(19): 197101. doi: 10.7498/aps.61.197101
    [14] 周大伟, 卢成, 李根全, 宋金璠, 宋玉玲, 包刚. 高压下金属Ba的结构稳定性以及热动力学的第一原理研究.  , 2012, 61(14): 146301. doi: 10.7498/aps.61.146301
    [15] 马颖. 非晶态石英的变电荷分子动力学模拟.  , 2011, 60(2): 026101. doi: 10.7498/aps.60.026101
    [16] 李世娜, 刘永. Cu3N弹性和热力学性质的第一性原理研究.  , 2010, 59(10): 6882-6888. doi: 10.7498/aps.59.6882
    [17] 刘娜娜, 宋仁伯, 孙翰英, 杜大伟. Mg2Sn电子结构及热力学性质的第一性原理计算.  , 2008, 57(11): 7145-7150. doi: 10.7498/aps.57.7145
    [18] 王海燕, 祝文军, 宋振飞, 刘绍军, 陈向荣, 贺红亮. 氦泡对铝的弹性性质的影响.  , 2008, 57(6): 3703-3708. doi: 10.7498/aps.57.3703
    [19] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究.  , 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [20] 吴恒安, 倪向贵, 王宇, 王秀喜. 金属纳米棒弯曲力学行为的分子动力学模拟.  , 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
计量
  • 文章访问数:  7967
  • PDF下载量:  277
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-09
  • 修回日期:  2015-12-14
  • 刊出日期:  2016-03-05

/

返回文章
返回
Baidu
map