搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

受污染混沌信号的协同滤波降噪

陈越 刘雄英 吴中堂 范艺 任子良 冯久超

引用本文:
Citation:

受污染混沌信号的协同滤波降噪

陈越, 刘雄英, 吴中堂, 范艺, 任子良, 冯久超

Denoising of contaminated chaotic signals based on collaborative filtering

Chen Yue, Liu Xiong-Ying, Wu Zhong-Tang, Fan Yi, Ren Zi-Liang, Feng Jiu-Chao
PDF
导出引用
  • 根据混沌吸引子的自相似分形特性,提出了一种利用协同滤波重构受污染混沌信号的降噪算法.所设计的降噪算法通过对相似片段的分组将一维混沌信号的降噪转化为一个二维联合滤波问题;然后,在二维变换域用阈值法衰减噪声;最后,通过反变换获得原始信号的估计.由于分组中的相似片段具有良好的相关性,与直接在一维变换域做阈值降噪相比,分组的二维变换能获得原信号更稀疏的表示,更好地抑制噪声.仿真结果表明,该算法对原始混沌信号的重构精度和信噪比的提升都优于小波阈值、局部曲线拟合等现有的混沌信号降噪方法,对相图的还原质量也更好.
    Reconstructing chaotic signals from noised data plays a critical role in many areas of science and engineering. However, the inherent features, such as aperiodic property, wide band spectrum, and extreme sensitivity to initial values, present a big challenge of reducing the noises in the contaminated chaotic signals. To address the above issues, a novel noise reduction algorithm based on the collaborative filtering is investigated in this paper. By exploiting the fractal self-similarity nature of chaotic attractors, the contaminated chaotic signals are reconstructed subsequently in three steps, i.e., grouping, collaborative filtering, and signal reconstruction. Firstly, the fragments of the noised signal are collected and sorted into different groups by mutual similarity. Secondly, each group is tackled with a hard threshold in the two-dimensional (2D) transforming domain to attenuate the noise. Lastly, an inverse transformation is adopted to estimate the noise-free fragments. As the fragments within a group are closely correlated due to their mutual similarity, the 2D transform of the group should be sparser than the one-dimensional transform of the original signal in the first step, leading to much more effective noise attenuation. The fragments collected in the grouping step may overlap each other, meaning that a signal point could be included in more than one fragment and have different collaborative filtering results. Therefore, the noise-free signal is reconstructed by averaging these collaborative filtering results point by point. The parameters of the proposed algorithm are discussed and a set of recommended parameters is given. In the simulation, the chaotic signal is generated by the Lorenz system and contaminated by addictive white Gaussian noise. The signal-to-noise ratio and the root mean square error are introduced to measure the noise reduction performance. As shown in the simulation results, the proposed algorithm has advantages over the existing chaotic signal denoising methods, such as local curve fitting, wavelet thresholding, and empirical mode decomposition iterative interval thresholding methods, in the reconstruction accuracy, improvement of the signal-to-noise ratio, and recovering quality of the phase portraits.
      通信作者: 刘雄英, liuxy@scut.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61372008)和广东省科技计划项目(批准号:2015B010101006,2014A010103014)资助的课题.
      Corresponding author: Liu Xiong-Ying, liuxy@scut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61372008) and the Science and Technology Planning Project of Guangdong Province, China (Grant Nos. 2015B010101006, 2014A010103014).
    [1]

    Feng J C 2012 Chaotic Signals and Information Processing (Beijing: Tsinghua University Press) pp32-35 (in Chinese) [冯久超 2012 混沌信号与信息处理 (北京: 清华大学出版社) 第3235页]

    [2]

    Badii R, Broggi G, Derighetti B, Ravani M, Ciliberto S, Politi A, Rubio M A 1988 Phys. Rev. Lett. 60 979

    [3]

    Liu X Y, Qiu S S, Lau C M 2005 J. Syst. Eng. Electron. 16 253

    [4]

    Cawley R, Hsu G H 1992 Phys. Rev. A 46 3057

    [5]

    Leontitsis A, Bountis T, Pange J 2004 Chaos 14 106

    [6]

    Han M, Liu Y H, Xi J H, Guo W 2007 IEEE Signal Proc. Lett. 14 62

    [7]

    Constantine W L B, Reinhall P G 2001 Int. J. Bifurcat. Chaos 11 483

    [8]

    Kopsinis Y, McLaughlin S 2009 IEEE Trans. Signal Proc. 57 1351

    [9]

    Wang X F, Qu J L, Gao F, Zhou Y P, Zhang Y X 2014 Acta Phys. Sin. 63 170203 (in Chinese) [王小飞, 曲建岭, 高峰, 周玉平, 张翔宇 2014 63 170203]

    [10]

    Wei X L, Lin R L, Liu S Y, Zhang C H 2016 Shock Vib. 2016 1

    [11]

    Wang W B, Zhang X D, Wang X L 2013 Acta Phys. Sin. 62 050201 (in Chinese) [王文波, 张晓东, 汪祥莉 2013 62 050201]

    [12]

    Li G M, L S X 2015 Acta Phys. Sin. 64 160502 (in Chinese) [李广明, 吕善翔 2015 64 160502]

    [13]

    Tung W W, Gao J B, Hu J, Yang L 2011 Phys. Rev. E 83 046210

    [14]

    Wang M J, Wu Z T, Feng J C 2015 Acta Phys. Sin. 64 040503 (in Chinese) [王梦蛟, 吴中堂, 冯久超 2015 64 040503]

    [15]

    Hu J F, Zhang Y X, Yang M, Li H Y, Xia W, Li J 2016 Nonlinear Dynam. 84 1469

    [16]

    Donoho D L, Johnstone I M 1994 Biometrika 81 425

    [17]

    Dabov K, Foi A, Katkovnik V, Egiazarian K 2007 IEEE Trans. Image Proc. 16 2080

    [18]

    Lebrun M 2012 Image Proc. On Line 2 175

    [19]

    Yu S M 2011 Chaotic Systems and Chaotic Circuits (Xi'an: Xidian University Press) pp10-12 (in Chinese) [禹思敏 2011 混沌系统与混沌电路 (西安: 西安电子科技大学出版社) 第1012页]

    [20]

    He T, Zhou Z O 2007 Acta Phys. Sin. 56 693 (in Chinese) [贺涛, 周正欧 2007 56 693]

    [21]

    Tang Y F, Liu S L, Lei N, Jiang R H, Liu Y H 2012 Acta Phys. Sin. 61 170504 (in Chinese) [唐友福, 刘树林, 雷娜, 姜锐红, 刘颖慧 2012 61 170504]

    [22]

    Coifman R R, Donoho D L 1995 Lect. Notes Stat. 103 125

  • [1]

    Feng J C 2012 Chaotic Signals and Information Processing (Beijing: Tsinghua University Press) pp32-35 (in Chinese) [冯久超 2012 混沌信号与信息处理 (北京: 清华大学出版社) 第3235页]

    [2]

    Badii R, Broggi G, Derighetti B, Ravani M, Ciliberto S, Politi A, Rubio M A 1988 Phys. Rev. Lett. 60 979

    [3]

    Liu X Y, Qiu S S, Lau C M 2005 J. Syst. Eng. Electron. 16 253

    [4]

    Cawley R, Hsu G H 1992 Phys. Rev. A 46 3057

    [5]

    Leontitsis A, Bountis T, Pange J 2004 Chaos 14 106

    [6]

    Han M, Liu Y H, Xi J H, Guo W 2007 IEEE Signal Proc. Lett. 14 62

    [7]

    Constantine W L B, Reinhall P G 2001 Int. J. Bifurcat. Chaos 11 483

    [8]

    Kopsinis Y, McLaughlin S 2009 IEEE Trans. Signal Proc. 57 1351

    [9]

    Wang X F, Qu J L, Gao F, Zhou Y P, Zhang Y X 2014 Acta Phys. Sin. 63 170203 (in Chinese) [王小飞, 曲建岭, 高峰, 周玉平, 张翔宇 2014 63 170203]

    [10]

    Wei X L, Lin R L, Liu S Y, Zhang C H 2016 Shock Vib. 2016 1

    [11]

    Wang W B, Zhang X D, Wang X L 2013 Acta Phys. Sin. 62 050201 (in Chinese) [王文波, 张晓东, 汪祥莉 2013 62 050201]

    [12]

    Li G M, L S X 2015 Acta Phys. Sin. 64 160502 (in Chinese) [李广明, 吕善翔 2015 64 160502]

    [13]

    Tung W W, Gao J B, Hu J, Yang L 2011 Phys. Rev. E 83 046210

    [14]

    Wang M J, Wu Z T, Feng J C 2015 Acta Phys. Sin. 64 040503 (in Chinese) [王梦蛟, 吴中堂, 冯久超 2015 64 040503]

    [15]

    Hu J F, Zhang Y X, Yang M, Li H Y, Xia W, Li J 2016 Nonlinear Dynam. 84 1469

    [16]

    Donoho D L, Johnstone I M 1994 Biometrika 81 425

    [17]

    Dabov K, Foi A, Katkovnik V, Egiazarian K 2007 IEEE Trans. Image Proc. 16 2080

    [18]

    Lebrun M 2012 Image Proc. On Line 2 175

    [19]

    Yu S M 2011 Chaotic Systems and Chaotic Circuits (Xi'an: Xidian University Press) pp10-12 (in Chinese) [禹思敏 2011 混沌系统与混沌电路 (西安: 西安电子科技大学出版社) 第1012页]

    [20]

    He T, Zhou Z O 2007 Acta Phys. Sin. 56 693 (in Chinese) [贺涛, 周正欧 2007 56 693]

    [21]

    Tang Y F, Liu S L, Lei N, Jiang R H, Liu Y H 2012 Acta Phys. Sin. 61 170504 (in Chinese) [唐友福, 刘树林, 雷娜, 姜锐红, 刘颖慧 2012 61 170504]

    [22]

    Coifman R R, Donoho D L 1995 Lect. Notes Stat. 103 125

  • [1] 施岳, 欧攀, 郑明, 邰含旭, 王玉红, 段若楠, 吴坚. 基于轻量残差复合增强收敛神经网络的粒子场计算层析成像伪影噪声抑制.  , 2024, 73(10): 104202. doi: 10.7498/aps.73.20231902
    [2] 陈松懋, 苏秀琴, 郝伟, 张振扬, 汪书潮, 朱文华, 王杰. 基于光子计数激光雷达的自适应门控抑噪及三维重建算法.  , 2022, 71(10): 104202. doi: 10.7498/aps.71.20211697
    [3] 周大方, 张树林, 蒋式勤. 用于心脏电活动成像的空间滤波器输出噪声抑制方法.  , 2018, 67(15): 158702. doi: 10.7498/aps.67.20180294
    [4] 王梦蛟, 周泽权, 李志军, 曾以成. 混沌信号自适应协同滤波去噪.  , 2018, 67(6): 060501. doi: 10.7498/aps.67.20172470
    [5] 苏理云, 孙唤唤, 王杰, 阳黎明. 混沌噪声背景下微弱脉冲信号的检测及恢复.  , 2017, 66(9): 090503. doi: 10.7498/aps.66.090503
    [6] 李广明, 胡志辉. 基于人工蜂群算法的混沌信号盲提取.  , 2016, 65(23): 230501. doi: 10.7498/aps.65.230501
    [7] 胡进峰, 张亚璇, 李会勇, 杨淼, 夏威, 李军. 基于最优滤波器的强混沌背景中谐波信号检测方法研究.  , 2015, 64(22): 220504. doi: 10.7498/aps.64.220504
    [8] 陈越, 吕善翔, 王梦蛟, 冯久超. 一种基于人工蜂群算法的混沌信号盲分离方法.  , 2015, 64(9): 090501. doi: 10.7498/aps.64.090501
    [9] 李广明, 吕善翔. 混沌信号的压缩感知去噪.  , 2015, 64(16): 160502. doi: 10.7498/aps.64.160502
    [10] 杨东东, 马红光, 徐东辉, 冯晓伟. 单输入单输出系统故障检测中匹配混沌激励的设计.  , 2014, 63(12): 120508. doi: 10.7498/aps.63.120508
    [11] 黄锦旺, 李广明, 冯久超, 晋建秀. 一种无线传感器网络中的混沌信号重构算法.  , 2014, 63(14): 140502. doi: 10.7498/aps.63.140502
    [12] 黄锦旺, 冯久超, 吕善翔. 混沌信号在无线传感器网络中的盲分离.  , 2014, 63(5): 050502. doi: 10.7498/aps.63.050502
    [13] 王文波, 张晓东, 汪祥莉. 基于独立成分分析和经验模态分解的混沌信号降噪.  , 2013, 62(5): 050201. doi: 10.7498/aps.62.050201
    [14] 刘明, 张树林, 李华, 邱阳, 曾佳, 张国峰, 王永良, 孔祥燕, 谢晓明. 一种应用于心磁噪声抑制的选择性平均方法研究.  , 2013, 62(9): 098501. doi: 10.7498/aps.62.098501
    [15] 吕善翔, 冯久超. 一种混沌映射的相空间去噪方法.  , 2013, 62(23): 230503. doi: 10.7498/aps.62.230503
    [16] 王世元, 冯久超. 一种新的参数估计方法及其在混沌信号盲分离中的应用.  , 2012, 61(17): 170508. doi: 10.7498/aps.61.170508
    [17] 王国光, 王丹, 何丽桥. 混沌中信号的投影滤波.  , 2010, 59(5): 3049-3056. doi: 10.7498/aps.59.3049
    [18] 谌 龙, 王德石. 基于参数非共振激励混沌抑制原理的微弱方波信号检测.  , 2007, 56(9): 5098-5102. doi: 10.7498/aps.56.5098
    [19] 游荣义, 陈 忠, 徐慎初, 吴伯僖. 基于小波变换的混沌信号相空间重构研究.  , 2004, 53(9): 2882-2888. doi: 10.7498/aps.53.2882
    [20] 李 月, 杨宝俊, 石要武. 色噪声背景下微弱正弦信号的混沌检测.  , 2003, 52(3): 526-530. doi: 10.7498/aps.52.526
计量
  • 文章访问数:  6366
  • PDF下载量:  223
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-19
  • 修回日期:  2017-06-18
  • 刊出日期:  2017-11-05

/

返回文章
返回
Baidu
map