搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压下锗化镁的金属化相变研究

王君龙 张林基 刘其军 陈元正 沈如 何竹 唐斌 刘秀茹

引用本文:
Citation:

高压下锗化镁的金属化相变研究

王君龙, 张林基, 刘其军, 陈元正, 沈如, 何竹, 唐斌, 刘秀茹

Pressure-induced metallization transition in Mg2Ge

Wang Jun-Long, Zhang Lin-Ji, Liu Qi-Jun, Chen Yuan-Zheng, Shen Ru, He Zhu, Tang Bin, Liu Xiu-Ru
PDF
导出引用
  • 锗化镁是一种窄带半导体,压力作用可以使锗化镁导带底与价带顶的能隙变小.本文基于第一性原理计算了锗化镁在高压下的能带结构以及反萤石相(常压稳定相)和反氯铅矿相(高压相)的焓值,发现在7.5 GPa时反萤石结构锗化镁导带底与价带顶的能隙闭合,预示着半导体相转变为金属相,计算结果还预测在11.0 GPa时锗化镁发生从反萤石结构到反氯铅矿结构的相变.实验研究方面,本文采用长条形压砧在连续加压条件下测量了锗化镁高压下的电阻变化,采用金刚石对顶压砧测量了锗化镁的高压原位拉曼光谱,发现在8.7 GPa锗化镁的电阻出现不连续变化,9.8 GPa以上锗化镁的拉曼振动峰消失.由于金属相的自由电子浓度高会阻碍激发光进入样品,进而引起拉曼振动峰消失,因此我们推测锗化镁在9.8 GPa转变为金属相.
    Mg2Ge with anti-fluorite structure at ambient pressure is characterized as a narrow band semiconductor and increasing pressure results in a decrease of the gap. In this work, the band structure of anti-fluorite Mg2Ge under high pressure is studied by first principles calculations, which suggests that Mg2Ge becomes metallic at 7.5 GPa as a result of band gap closure. The enthalpy difference between anti-fluorite phase and anti-cotunnite phase under high pressure is calculated by the first-principles plane-wave method within the pseudopotential and generalized gradient approximation. The results show that Mg2Ge undergoes a phase transition from the anti-fluorite structure to anti-cotunnite structure at 11.0 GPa. Then we investigate experimentally the pressure-induced metallization of Mg2Ge by electric resistance measurement in strip anvil cell and Raman spectroscopy by diamond anvil cell. The pressure distribution is homogeneous along the central line of the strip anvil and the pressure is changed ccontinuously by using a hydraulically driven two-anvil press. Raman scattering experiment is performed at pressure up to 21.1 GPa on a back scattered Raman spectrometer. The wavelength of excitation laser is 532 nm. No pressure-transmitting is used and pressure is determined by the shift of the ruby luminescence line. It is found that neither a discontinuous change of electrical resistance at 8.7 GPa nor Raman vibration modes of Mg2Ge appear above 9.8 GPa. The disappearance of the Raman vibration mode is ascribed to the metallization since the the free carrier concentration rises after metallization has prevented the laser light from penetrating into the sample. We compare these results with those of resistivity measurements in diamond anvil cell. Li et al.[2015 Appl. Phys. Lett. 107 142103] reported that Mg2Ge becomes metallic phase at 7.4 GPa and is transformed into metallic anti-cotunnite phase at around 9.5 GPa. We speculate that the discontinuous change in electric resistance at 8.7 GPa is ascribed to the gap closure of anti-fluorite phase and Mg2Ge may transform into the anti-cotunnite phase above 9.8 GPa.
      通信作者: 刘秀茹, xrliu@swjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11004163)和中央高校基本科研业务费专项资金(批准号:2682014ZT31,2682016CX065)资助的课题.
      Corresponding author: Liu Xiu-Ru, xrliu@swjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11004163) and the Fundamental Research Funds for Central Universities (Grant Nos. 2682014ZT31, 2682016CX065).
    [1]

    Tani J, Kido H 2008 Comp. Mater. Sci. 42 531

    [2]

    Chung P L, Whitten W B, Danielson G C 1965 J. Phys. Chem. Solids 26 1753

    [3]

    Guo S D 2016 Eur. Phys. J. B 89 1

    [4]

    Liu H Y, Zhu Z Z, Yang Y 2008 Acta Phys. Sin. 57 5182 (in Chinese)[刘慧英, 朱梓忠, 杨勇2008 57 5182]

    [5]

    Mao J, Kim H S, Shuai J, Liu Z, He R, Saparamadu U, Tian F, Liu W, Ren Z 2016 Acta Mater. 103 633

    [6]

    Martin J J 1972 J. Phys. Chem. Solids 33 1139

    [7]

    Stella A, Lynch D W 1964 J. Phys. Chem. Solids 25 1253

    [8]

    Corkill J L, Cohen M L 1993 Phys. Rev. B 48 17138

    [9]

    Xu J A, Wang Y Y, Xu M H 1980 Acta Phys. Sin. 29 1063 (in Chinese)[徐济安, 王彦云, 徐敏华1980 29 1063]

    [10]

    Wang J R, Zhu J, Hao Y J, Ji G F, Xiang G, Zou Y C 2014 Acta Phys. Sin. 63 186401(in Chinese)[王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹洋春2014 63 186401]

    [11]

    Jin C Q, Liu Q Q, Deng Z, Zhang S J, Xing L Y, Zhu J L, Kong P P, Wang X C 2013 Chin. J. High Press. Phys. 27 473 (in Chinese)[靳常青, 刘青清, 邓正, 张思佳, 邢令义, 朱金龙, 孔盼盼, 望贤成2013高压 27 473]

    [12]

    Zhang S J, Wang X C, Sammynaiken R, Tse J S, Yang L X, Liu Q Q, Desgreniers S, Yao Y, Liu H Z, Jin C Q 2009 Phys. Rev. B 80 014506

    [13]

    Zhang J L, Zhang S J, Weng H M, Zhang W, Yang L X, Liu Q Q, Feng S M, Wang X C, Yu R C, Cao L Z, Wang L, Yang W G, Liu H Z, Zhao W Y, Zhang S C, Dai X, Fang Z, Jin C Q 2011 Proc. Natl. Acad. Sci. USA 108 24

    [14]

    Kalarasse F, Bennecer B 2008 J. Phys. Chem. Solids 69 1775

    [15]

    Yu F, Sun J X, Chen T H 2011 Phys. B:Condens. Matter 406 1789

    [16]

    Li Y, Gao Y, Han Y, Liu C, Peng G, Wang Q, Ke F, Ma Y, Gao C 2015 Appl. Phys. Lett. 107 142103

    [17]

    Tang F, Chen L Y, Liu X R, Wang J L, Zhang L J, Hong S M 2016 Acta Phys. Sin. 65 100701 (in Chinese)[唐菲, 陈丽英, 刘秀茹, 王君龙, 张林基, 洪时明2016 65 100701]

    [18]

    Getting I C 1998 Metrologia 35 119

    [19]

    Ohtani A, Motobayashi M, Onodera A 1980 Phys. Lett. A 75 435

    [20]

    Morozova N V, Ovsyannikov S V, Korobeinikov I V 2014 J. Appl. Phys. 115 213705

    [21]

    Mao H K, Xu J A, Bell P M 1986 J. Geophys. Res 91 4673

    [22]

    Payne M C, Teter M P, Allan D C 1992 Rev. Modern Phys. 64 1045

    [23]

    Segall M D, Lindan P J D, Probert M J 2002 J. Phys.:Condens. Matter 14 2717

    [24]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [26]

    Fischer T H, Almlof J 1992 J. Phys. Chem. 96 9768

    [27]

    Grosch G H, Range K J 1996 J. Alloy. Compd. 235 250

    [28]

    Zhou D, Liu J, Xu S, Peng P 2012 Comp. Mater. Sci. 51 409

    [29]

    Janot R, Cuevas F, Latroche M, Percheron-Guégan A 2006 Intermetallics 14 163

    [30]

    Buchenauer C J, Cardona M 1971 Phys. Rev. B 3 2504

    [31]

    Anastassakis E, Perry C H 1971 Phys. Rev. B 4 1251

    [32]

    Morozova N V, Ovsyannikov S V, Korobeinikov I V 2014 J. Appl. Phys. 115 213705

    [33]

    Mohiuddin T M G, Lombardo A, Nair R R 2009 Phys. Rev. B 79 205433

    [34]

    Stella A, Brothers A D, Hopkins R H 1967 Phys. Status Solidi 23 697

    [35]

    Benhelal O, Chahed A, Laksari S 2005 Phys. Status Solidi 242 2022

  • [1]

    Tani J, Kido H 2008 Comp. Mater. Sci. 42 531

    [2]

    Chung P L, Whitten W B, Danielson G C 1965 J. Phys. Chem. Solids 26 1753

    [3]

    Guo S D 2016 Eur. Phys. J. B 89 1

    [4]

    Liu H Y, Zhu Z Z, Yang Y 2008 Acta Phys. Sin. 57 5182 (in Chinese)[刘慧英, 朱梓忠, 杨勇2008 57 5182]

    [5]

    Mao J, Kim H S, Shuai J, Liu Z, He R, Saparamadu U, Tian F, Liu W, Ren Z 2016 Acta Mater. 103 633

    [6]

    Martin J J 1972 J. Phys. Chem. Solids 33 1139

    [7]

    Stella A, Lynch D W 1964 J. Phys. Chem. Solids 25 1253

    [8]

    Corkill J L, Cohen M L 1993 Phys. Rev. B 48 17138

    [9]

    Xu J A, Wang Y Y, Xu M H 1980 Acta Phys. Sin. 29 1063 (in Chinese)[徐济安, 王彦云, 徐敏华1980 29 1063]

    [10]

    Wang J R, Zhu J, Hao Y J, Ji G F, Xiang G, Zou Y C 2014 Acta Phys. Sin. 63 186401(in Chinese)[王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹洋春2014 63 186401]

    [11]

    Jin C Q, Liu Q Q, Deng Z, Zhang S J, Xing L Y, Zhu J L, Kong P P, Wang X C 2013 Chin. J. High Press. Phys. 27 473 (in Chinese)[靳常青, 刘青清, 邓正, 张思佳, 邢令义, 朱金龙, 孔盼盼, 望贤成2013高压 27 473]

    [12]

    Zhang S J, Wang X C, Sammynaiken R, Tse J S, Yang L X, Liu Q Q, Desgreniers S, Yao Y, Liu H Z, Jin C Q 2009 Phys. Rev. B 80 014506

    [13]

    Zhang J L, Zhang S J, Weng H M, Zhang W, Yang L X, Liu Q Q, Feng S M, Wang X C, Yu R C, Cao L Z, Wang L, Yang W G, Liu H Z, Zhao W Y, Zhang S C, Dai X, Fang Z, Jin C Q 2011 Proc. Natl. Acad. Sci. USA 108 24

    [14]

    Kalarasse F, Bennecer B 2008 J. Phys. Chem. Solids 69 1775

    [15]

    Yu F, Sun J X, Chen T H 2011 Phys. B:Condens. Matter 406 1789

    [16]

    Li Y, Gao Y, Han Y, Liu C, Peng G, Wang Q, Ke F, Ma Y, Gao C 2015 Appl. Phys. Lett. 107 142103

    [17]

    Tang F, Chen L Y, Liu X R, Wang J L, Zhang L J, Hong S M 2016 Acta Phys. Sin. 65 100701 (in Chinese)[唐菲, 陈丽英, 刘秀茹, 王君龙, 张林基, 洪时明2016 65 100701]

    [18]

    Getting I C 1998 Metrologia 35 119

    [19]

    Ohtani A, Motobayashi M, Onodera A 1980 Phys. Lett. A 75 435

    [20]

    Morozova N V, Ovsyannikov S V, Korobeinikov I V 2014 J. Appl. Phys. 115 213705

    [21]

    Mao H K, Xu J A, Bell P M 1986 J. Geophys. Res 91 4673

    [22]

    Payne M C, Teter M P, Allan D C 1992 Rev. Modern Phys. 64 1045

    [23]

    Segall M D, Lindan P J D, Probert M J 2002 J. Phys.:Condens. Matter 14 2717

    [24]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [26]

    Fischer T H, Almlof J 1992 J. Phys. Chem. 96 9768

    [27]

    Grosch G H, Range K J 1996 J. Alloy. Compd. 235 250

    [28]

    Zhou D, Liu J, Xu S, Peng P 2012 Comp. Mater. Sci. 51 409

    [29]

    Janot R, Cuevas F, Latroche M, Percheron-Guégan A 2006 Intermetallics 14 163

    [30]

    Buchenauer C J, Cardona M 1971 Phys. Rev. B 3 2504

    [31]

    Anastassakis E, Perry C H 1971 Phys. Rev. B 4 1251

    [32]

    Morozova N V, Ovsyannikov S V, Korobeinikov I V 2014 J. Appl. Phys. 115 213705

    [33]

    Mohiuddin T M G, Lombardo A, Nair R R 2009 Phys. Rev. B 79 205433

    [34]

    Stella A, Brothers A D, Hopkins R H 1967 Phys. Status Solidi 23 697

    [35]

    Benhelal O, Chahed A, Laksari S 2005 Phys. Status Solidi 242 2022

  • [1] 张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清. 基于机器学习和第一性原理计算的Janus材料的预测.  , 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [2] 严志, 方诚, 王芳, 许小红. 过渡金属元素掺杂对SmCo3合金结构和磁性能影响的第一性原理计算.  , 2024, 73(3): 037502. doi: 10.7498/aps.73.20231436
    [3] 吕程烨, 陈英炜, 谢牧廷, 李雪阳, 于宏宇, 钟阳, 向红军. 外加电磁场下周期性体系的第一性原理计算方法.  , 2023, 72(23): 237102. doi: 10.7498/aps.72.20231313
    [4] 杨海林, 陈琦丽, 顾星, 林宁. 氧原子在氟化石墨烯上扩散的第一性原理计算.  , 2023, 72(1): 016801. doi: 10.7498/aps.72.20221630
    [5] 杨顺杰, 李春梅, 周金萍. 磁无序及合金化效应影响Co2CrZ (Z = Ga, Si, Ge)合金相稳定性和弹性常数的第一性原理研究.  , 2022, 71(10): 106201. doi: 10.7498/aps.71.20212254
    [6] 邓旭良, 冀先飞, 王德君, 黄玲琴. 石墨烯过渡层对金属/SiC接触肖特基势垒调控的第一性原理研究.  , 2022, 71(5): 058102. doi: 10.7498/aps.71.20211796
    [7] 王奇, 唐法威, 侯超, 吕皓, 宋晓艳. W-In体系溶质晶界偏聚行为的第一性原理计算.  , 2019, 68(7): 077101. doi: 10.7498/aps.68.20190056
    [8] 胡前库, 侯一鸣, 吴庆华, 秦双红, 王李波, 周爱国. 过渡金属硼碳化物TM3B3C和TM4B3C2稳定性和性能的理论计算.  , 2019, 68(9): 096201. doi: 10.7498/aps.68.20190158
    [9] 王艳, 曹仟慧, 胡翠娥, 曾召益. Ce-La-Th合金高压相变的第一性原理计算.  , 2019, 68(8): 086401. doi: 10.7498/aps.68.20182128
    [10] 叶红军, 王大威, 姜志军, 成晟, 魏晓勇. 钙钛矿结构SnTiO3铁电相变的第一性原理研究.  , 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [11] 张召富, 周铁戈, 左旭. 氧、硫掺杂六方氮化硼单层的第一性原理计算.  , 2013, 62(8): 083102. doi: 10.7498/aps.62.083102
    [12] 张召富, 耿朝晖, 王鹏, 胡耀乔, 郑宇斐, 周铁戈. 5d过渡金属原子掺杂氮化硼纳米管的第一性原理计算.  , 2013, 62(24): 246301. doi: 10.7498/aps.62.246301
    [13] 吕泉, 黄伟其, 王晓允, 孟祥翔. Si(111)面上氮原子薄膜的电子态密度第一性原理计算及分析.  , 2010, 59(11): 7880-7884. doi: 10.7498/aps.59.7880
    [14] 谭兴毅, 金克新, 陈长乐, 周超超. YFe2B2电子结构的第一性原理计算.  , 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [15] 杨天兴, 成强, 许红斌, 王渊旭. 几种三元过渡金属碳化物弹性及电子结构的第一性原理研究.  , 2010, 59(7): 4919-4924. doi: 10.7498/aps.59.4919
    [16] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算.  , 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [17] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算.  , 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
    [18] 刘利花, 张 颖, 吕广宏, 邓胜华, 王天民. Sr偏析Al晶界结构的第一性原理计算.  , 2008, 57(7): 4428-4433. doi: 10.7498/aps.57.4428
    [19] 宫长伟, 王轶农, 杨大智. NiTi形状记忆合金马氏体相变的第一性原理研究.  , 2006, 55(6): 2877-2881. doi: 10.7498/aps.55.2877
    [20] 孙 博, 刘绍军, 祝文军. Fe在高压下第一性原理计算的芯态与价态划分.  , 2006, 55(12): 6589-6594. doi: 10.7498/aps.55.6589
计量
  • 文章访问数:  5942
  • PDF下载量:  223
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-10
  • 修回日期:  2017-06-07
  • 刊出日期:  2017-08-05

/

返回文章
返回
Baidu
map