-
表面增强拉曼散射(SERS)技术可有效增强样品分子的拉曼信号,对生物分子检测具有较高的灵敏性,因此在生化方面有着许多潜在的应用.而将空芯微结构光纤与SERS技术相结合不仅能够远端实时、分布式地检测,同时还可以增加光场与待测物的有效作用面积,减少传统光纤探针无法避免的石英背景信号等问题.本文基于空芯微结构光纤进行SERS探针的制备及性能测试研究,利用真空物理溅射法在空芯光纤内镀纳米Ag膜,从而制备成SERS探针,通过实验检测不同浓度的罗丹明6G(R6G)酒精溶液的拉曼信号.结果表明,在探针的近端正面成功探测到了浓度低至10-9 mol/L的R6G拉曼信号,在探针的远端反面探测到的浓度可小于10-6 mol/L.该实验结果为研究高灵敏度的SERS探针提供了一种新的手段.Surface-enhanced Raman scattering (SERS) technology can effectively enhance the Raman signal of sample molecules. It has a higher sensitivity to detect biomolecule and thus has many potential applications in biochemistry. The combination of hollow-core microstructured fiber and SERS technology not only enables remote real-time and distributed detection, but also can increase the effective action area between the light field and the object to be measured, and further reduce silica glass background signal that is unavoidable in traditional fiber probes. In this paper, the hollow-core microstructure fiber Raman probes with excellent performance are investigated from the aspects of fiber preparation and SERS experi-mental testing. First, we design and manufacture a kind of hollow-core microstructured fiber with multi-bands in the visible and near-infrared wavelength. The fibers show good light guide performance and thus can fully meet the requirements for surface-enhanced Raman excitation and signal transmission. At the same time, the large core size facilitates the coupling of excitation light, and provides enough room for the test object and the light field. Then, this hollow-core microstructured fiber is used in surface-enhanced Raman experiment. A layer of nano-Ag film is modified on the inner surface of the hollow-core microstructure fiber to prepare the SERS probe by the vacuum physical sputtering method, and Rhodamine 6G (R6G) alcohol solutions with different concentrations are prepared by the dilution method. The hollow-core microstructured fiber deposited with the Ag nano-film is immersed in R6G alcohol solution for 2 min. The alcohol solution of R6G is sucked into the air hole of the hollow-core microstructured fiber by the capillary effect. Then this fiber with R6G alcohol solution is placed in a drying oven at 40 ℃ for 3 h until the alcohol solvent in the air hole is completely volatilized. After that, this fiber is taken out and tested under a detection environment full with air. The fiber SERS probes are tested by microscopic confocal Raman spectroscopy, then the Raman spectra of R6G alcohol solvents with different concentrations are obtained. An R6G Raman signal with a concentration as low as 10-9 mol/L is successfully detected on the front side of the probe. In the far-end back-side detection mode, the detected concentration of SERS probe can be less than 10-6 mol/L. The designed hollow-core microstructured fiber probe has a simple structure and is easy to prepare and test. Compared with the traditional optical fiber, it has advantages of large effective area for the test object and the light field, small interference from the silica glass background signal. This hollow-core microstructured fiber probe has wide application prospects in biochemical detection and other fields.
[1] Nie S, Emory S R 1997 Science 275 1102
[2] Huang Q, Wang J, Cao L R, Sun J, Zhang X D, Geng W D, Xiong S Z, Zhao Y 2009 Acta Phys. Sin. 58 1980 (in Chinese) [黄茜, 王京, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖 2009 58 1980]
[3] Huang Q, Zhang X D, Ji W W, Wang J, Ni J, Li L N, Sun J, Geng W D, Geng X H, Xiong S Z, Zhao Y 2010 Acta Phys. Sin. 59 2753 (in Chinese) [黄茜, 张晓丹, 纪伟伟, 王京, 倪牮, 李林娜, 孙建, 耿卫东, 耿新华, 熊绍珍, 赵颖 2010 59 2753]
[4] Yang X, Tanaka Z, Newhouse R, Xu Q, Chen B, Chen S 2010 Rev. Sci. Instrum. 81 123103
[5] Andrade G F S, Fan M, Brolo A G 2010 Biosens. Bioelectron. 25 2270
[6] Liu S, Rong M, Zhang H, Chen N, Pang F, Chen Z 2016 Biomed. Opt. Express 7 810
[7] Zheng X L, Guo D W, Shao Y L, Jia S J, Xu S P, Zhao B, Xu W Q 2008 Langmuir 24 4394
[8] Balu M, Liu G, Chen Z, Tromberg B J, Potma E O 2010 Opt. Express 18 2380
[9] Zhang Y, Gu C, Schwartzberg A M, Zhang J Z 2005 Appl. Phys. Lett. 87 123105
[10] Yin Z, Geng Y, Xie Q, Hong X, Tan X, Chen Y 2016 Appl. Opt. 55 5408
[11] Guo X D, Tang J, Liu W Y, Guo H, Fang G C, Zhao M M, Wang L, Xia M J, Liu J 2017 Acta Phys. Sin. 66 044208 (in Chinese) [郭旭东, 唐军, 刘文耀, 郭浩, 房国成, 赵苗苗, 王磊, 夏美晶, 刘俊 2017 66 044208]
[12] Fan Q F, Cao J, Liu Y, Yao B, Mao Q H 2013 Appl. Opt. 52 6163
[13] Yang X, Shi C, Newhouse R, Zhang J Z, Gu C 2011 Int. J. Opt. 2011 754610
[14] Yan D, Popp J, Pletz M W, Frosch T 2018 Anal. Methods 10 586
[15] Yan H, Gu C, Yang C, Liu J, Jin G, Zhang J 2007 Biomed. Opt. 6433 643307
[16] Khetani A, Momenpour A, Alarcon E I, Anis H 2015 Biomed. Opt. Express 6 4599
[17] Dinish U S, Fu C Y, Soh K S, Ramaswamy B, Kumar A, Olivo M 2012 Biosens. Bioelectron. 33 293
[18] Ghenuche P, Rammler S, Joly N Y, Scharrer M, Frosz M, Wenger J 2012 Opt. Lett. 37 4371
[19] Yan H, Gu C, Yang C, Liu J, Jin G, Zhang J 2006 Appl. Phys. Lett. 89 204101
[20] Zhang Y, Shi C, Gu C, Seballos L, Zhang J Z 2007 Appl. Phys. Lett. 90 193504
[21] Debord B, Amsanpally A, Chafer M, Baz A, Maurel M, Blondy J M 2017 Optica 4 209
[22] Zhang N, Humbert G, Gong T, Shum P P, Li K, Auguste J L 2016 Sens. Actu. B 223 195
[23] Ding S Y, Yi J, Li J F, Ren B, Wu D Y, Panneerselvam R 2016 Nat. Rev. Mater. 1 16021
[24] Hildebrandt P, Stockburger M 1984 J. Phys. Chem. 88 5935
-
[1] Nie S, Emory S R 1997 Science 275 1102
[2] Huang Q, Wang J, Cao L R, Sun J, Zhang X D, Geng W D, Xiong S Z, Zhao Y 2009 Acta Phys. Sin. 58 1980 (in Chinese) [黄茜, 王京, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖 2009 58 1980]
[3] Huang Q, Zhang X D, Ji W W, Wang J, Ni J, Li L N, Sun J, Geng W D, Geng X H, Xiong S Z, Zhao Y 2010 Acta Phys. Sin. 59 2753 (in Chinese) [黄茜, 张晓丹, 纪伟伟, 王京, 倪牮, 李林娜, 孙建, 耿卫东, 耿新华, 熊绍珍, 赵颖 2010 59 2753]
[4] Yang X, Tanaka Z, Newhouse R, Xu Q, Chen B, Chen S 2010 Rev. Sci. Instrum. 81 123103
[5] Andrade G F S, Fan M, Brolo A G 2010 Biosens. Bioelectron. 25 2270
[6] Liu S, Rong M, Zhang H, Chen N, Pang F, Chen Z 2016 Biomed. Opt. Express 7 810
[7] Zheng X L, Guo D W, Shao Y L, Jia S J, Xu S P, Zhao B, Xu W Q 2008 Langmuir 24 4394
[8] Balu M, Liu G, Chen Z, Tromberg B J, Potma E O 2010 Opt. Express 18 2380
[9] Zhang Y, Gu C, Schwartzberg A M, Zhang J Z 2005 Appl. Phys. Lett. 87 123105
[10] Yin Z, Geng Y, Xie Q, Hong X, Tan X, Chen Y 2016 Appl. Opt. 55 5408
[11] Guo X D, Tang J, Liu W Y, Guo H, Fang G C, Zhao M M, Wang L, Xia M J, Liu J 2017 Acta Phys. Sin. 66 044208 (in Chinese) [郭旭东, 唐军, 刘文耀, 郭浩, 房国成, 赵苗苗, 王磊, 夏美晶, 刘俊 2017 66 044208]
[12] Fan Q F, Cao J, Liu Y, Yao B, Mao Q H 2013 Appl. Opt. 52 6163
[13] Yang X, Shi C, Newhouse R, Zhang J Z, Gu C 2011 Int. J. Opt. 2011 754610
[14] Yan D, Popp J, Pletz M W, Frosch T 2018 Anal. Methods 10 586
[15] Yan H, Gu C, Yang C, Liu J, Jin G, Zhang J 2007 Biomed. Opt. 6433 643307
[16] Khetani A, Momenpour A, Alarcon E I, Anis H 2015 Biomed. Opt. Express 6 4599
[17] Dinish U S, Fu C Y, Soh K S, Ramaswamy B, Kumar A, Olivo M 2012 Biosens. Bioelectron. 33 293
[18] Ghenuche P, Rammler S, Joly N Y, Scharrer M, Frosz M, Wenger J 2012 Opt. Lett. 37 4371
[19] Yan H, Gu C, Yang C, Liu J, Jin G, Zhang J 2006 Appl. Phys. Lett. 89 204101
[20] Zhang Y, Shi C, Gu C, Seballos L, Zhang J Z 2007 Appl. Phys. Lett. 90 193504
[21] Debord B, Amsanpally A, Chafer M, Baz A, Maurel M, Blondy J M 2017 Optica 4 209
[22] Zhang N, Humbert G, Gong T, Shum P P, Li K, Auguste J L 2016 Sens. Actu. B 223 195
[23] Ding S Y, Yi J, Li J F, Ren B, Wu D Y, Panneerselvam R 2016 Nat. Rev. Mater. 1 16021
[24] Hildebrandt P, Stockburger M 1984 J. Phys. Chem. 88 5935
计量
- 文章访问数: 6761
- PDF下载量: 148
- 被引次数: 0