搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

C掺杂FePt铁磁薄膜光诱导超快退磁动力学研究

潘群峰 张泽宇 王会真 林贤 金钻明 程振祥 马国宏

引用本文:
Citation:

C掺杂FePt铁磁薄膜光诱导超快退磁动力学研究

潘群峰, 张泽宇, 王会真, 林贤, 金钻明, 程振祥, 马国宏

Demagnetization dynamics of C-doped FePt film

Pan Qun-Feng, Zhang Ze-Yu, Wang Hui-Zhen, Lin Xian, Jin Zuan-Ming, Cheng Zhen-Xiang, Ma Guo-Hong
PDF
导出引用
  • FePt合金薄膜由于具有较强的磁各向异性而在磁信息和磁光信息存储中具有重要的应用. C 掺杂可精确调控薄膜的磁各向异性, 从而可有效地改变薄膜的矫顽场. 通过超短激光脉冲与铁磁薄膜相互作用, 可以获得非平衡状态下电子、自旋和晶格等自由度之间的动态耦合参数, 这是研究超快磁记录材料的物理基础. 本文基于瞬态磁光Kerr效应, 研究了两种C掺杂浓度下FePt薄膜的超快磁光响应. 实验结果表明: 瞬态Kerr信号与外加磁场正相关, 磁场反向, Kerr信号反号, 而瞬态反射率与外加磁场无关; 不同C掺杂的FePt薄膜的矫顽场不同, 软磁的退磁时间显著小于硬磁薄膜的退磁时间. 我们还观测到超快激光在铁磁薄膜中诱导频率约为49 GHz的相干声学声子, 该声子的频率与外加磁场无关. 实验结果为设计和研制新型磁光薄膜提供了实验依据.
    Magneto-optical information storage has been a hot research subject for several years. FePt exhibits abundant physical properties and has received much attention as a candidate material. Its alloy film with perpendicular anisotropy and small grain size has important applications in magnetic recordings due to the large intrinsic magnetic anisotropy which ensures long-time thermal stability of nanometer sized bits. However, the large coercive field of FePt is a significant factor that hinders its application. As is well known, the magnetic anisotropy in FePt alloy can be precisely modulated by carbon-doping, and as a result, the coercive field of FePt film can be modified effectively with the carbon dopant. On the other hand, the microscopic mechanism of magnetic storage relies on the motion of spin system. Ultrashort femtosecond laser has been demonstrated to be a very effective tool to investigate the dynamical coupling among different degrees of freedom, such as electron, spin and lattice in a ferromagnetic film. The research on spin dynamics has become a new frontier of condensed matter physics, which is crucial for ultrafast magnetic recording materials. In this work, by using the time-resolved magneto-optical Kerr effect spectroscopy, we study the ultrafast spin dynamics of two FePt alloy films with different carbon dopants under the applied magnetic field along the film surface. The FePt alloy films with different carbon dopants are fabricated on silicon substrates by the sputtering method. The main experimental findings in this work are as follows. (i) The transient Kerr signal is linearly proportional to the magnetization with the magnetic field up to 0.8 T, while the transient reflectivity of the film is independent of the applied magnetic field. (ii) For FePt alloy films with different coercive fields, it is found that the demagnetization time of the film with smaller coercive field is significantly faster than that of the larger counterpart: the former shows 0.8 ps demagnetization time, and the latter has a magnitude of 1.2 ps. The demagnetization times for both soft and hard magnetic films are independent of the applied magnetic field. (iii) With ultrafast laser pulse radiation, we observe the propagation of acoustic phonon with a resonance frequency of ~ 49 GHz, and the frequency of the acoustic phonon is independent of the applied magnetic field. From the above, the spin dynamics of the samples shows strong correlation with carbon-doping. Our experimental findings are desired for basic research as well as for the design and development of novel magneto-optical devices.
      通信作者: 马国宏, ghma@staff.shu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11174195)、高等学校博士学科点专项科研基金(批准号: 20123108110003)和上海市教委重点课题(批准号: 14ZZ101)资助的课题.
      Corresponding author: Ma Guo-Hong, ghma@staff.shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11174195), the Specialized Research Fund for the Doctoral Programs of Higher Education of China (Grant No. 20123108110003), and the Research Innovation Fund of the Shanghai Education Committee, China (Grant No. 14ZZ101).
    [1]

    Becher J, Mosendz O, Weller D, Kirilyuk A, Maan J C, Chrstanen P C M, Rasing Th, Kimel A 2014 Appl. Phys. Lett. 104 152412

    [2]

    Li Z H, Li X 2014 Acta Phys. Sin. 63 167504 (in Chinese) [李正华, 李翔 2014 63 167504]

    [3]

    Wu J B, Zhou M J, Wang X M, Wang Y Y, Xiong Z W, Cheng X L, Casanove M J, Gatel C, Wu W D 2014 Acta Phys. Sin. 63 166801 (in Chinese) [吴建邦, 周民杰, 王雪敏, 王瑜英, 熊政伟, 程新路, Marie-Jos Casannove, Christophe Gatel, 吴卫东 2014 63 166801]

    [4]

    Jin Z M, Guo F Y, Ma H, Wang L H, Ma G H, Chen J Z 2011 Acta Phys. Sin. 60 087803 (in Chinese) [金钻明, 郭飞云, 马红, 王丽华, 马国宏, 陈建中 2011 60 087803]

    [5]

    Kimel A V, Kirilyuk A, Usachev P A, Pisarev R V, Balbashov A M, Rasing T 2005 Nature 435 655

    [6]

    Beaurepaire E, Merle J C, Daunois A, Bigot J Y 1996 Phys. Rev. Lett. 76 4250

    [7]

    Carva K, Battiato M, Oppeneer P M 2011 Phys. Rev. Lett. 107 207201

    [8]

    Kampfrath T, Ulbrich R G, Leuenberger F, Munzenberg M, Sass B, Felsch W 2002 Phys. Rev. B 65 104429

    [9]

    He P, Ma L, Shi Z, Guo G Y, Zheng J G, Xin Y, Zhou S M 2012 Phys. Rev. Lett. 109 066402

    [10]

    Zhang Z Z, Cui B Y, Wang G Z, Ma B, Jin Q Y, Liu Y W 2010 Appl. Phys. Lett. 97 172508

    [11]

    Ma X, He P, Ma L, Guo G Y, Zhao H B, Zhou S M, Lpke G 2014 Appl. Phys. Lett. 104 192402

    [12]

    He P, Ma X, Zhang J W, Zhao H B, Lpke G, Shi Z, Zhou S M 2013 Phys. Rev. Lett. 110 077203

    [13]

    Mendil J, Nieves P, Chubykalo-Fesenko O, Walowski J, Santos T, Pisana S, Mnzenberg M 2014 Sci. Rep. 4 3980

    [14]

    Moisan N, Malinowski G, Mauchain J, Hehn M, Vodungbo B, Lning J, Mangin S, Fullerton E E, Thiaville A 2014 Sci. Rep. 4 4658

    [15]

    Li X L, Xu X H, Wu H S 2005 Rare Metal Mater. Engi. 34 1509 (in Chinese) [李小丽, 许小红, 武海顺 2005 稀有金属材料与工程 34 1509]

    [16]

    Pan Q F, Zhang Z Y, Jin Z M, Lin X, Ma G H, Shen H, Hong F, Cheng Z X 2015 Europhys. Lett. 109 47002

    [17]

    Xu Y, Jin Z M, Zhang Z B, Zhang Z Y, Lin X, Ma G H, Cheng Z X 2014 Chin. Phys. B 23 044206

  • [1]

    Becher J, Mosendz O, Weller D, Kirilyuk A, Maan J C, Chrstanen P C M, Rasing Th, Kimel A 2014 Appl. Phys. Lett. 104 152412

    [2]

    Li Z H, Li X 2014 Acta Phys. Sin. 63 167504 (in Chinese) [李正华, 李翔 2014 63 167504]

    [3]

    Wu J B, Zhou M J, Wang X M, Wang Y Y, Xiong Z W, Cheng X L, Casanove M J, Gatel C, Wu W D 2014 Acta Phys. Sin. 63 166801 (in Chinese) [吴建邦, 周民杰, 王雪敏, 王瑜英, 熊政伟, 程新路, Marie-Jos Casannove, Christophe Gatel, 吴卫东 2014 63 166801]

    [4]

    Jin Z M, Guo F Y, Ma H, Wang L H, Ma G H, Chen J Z 2011 Acta Phys. Sin. 60 087803 (in Chinese) [金钻明, 郭飞云, 马红, 王丽华, 马国宏, 陈建中 2011 60 087803]

    [5]

    Kimel A V, Kirilyuk A, Usachev P A, Pisarev R V, Balbashov A M, Rasing T 2005 Nature 435 655

    [6]

    Beaurepaire E, Merle J C, Daunois A, Bigot J Y 1996 Phys. Rev. Lett. 76 4250

    [7]

    Carva K, Battiato M, Oppeneer P M 2011 Phys. Rev. Lett. 107 207201

    [8]

    Kampfrath T, Ulbrich R G, Leuenberger F, Munzenberg M, Sass B, Felsch W 2002 Phys. Rev. B 65 104429

    [9]

    He P, Ma L, Shi Z, Guo G Y, Zheng J G, Xin Y, Zhou S M 2012 Phys. Rev. Lett. 109 066402

    [10]

    Zhang Z Z, Cui B Y, Wang G Z, Ma B, Jin Q Y, Liu Y W 2010 Appl. Phys. Lett. 97 172508

    [11]

    Ma X, He P, Ma L, Guo G Y, Zhao H B, Zhou S M, Lpke G 2014 Appl. Phys. Lett. 104 192402

    [12]

    He P, Ma X, Zhang J W, Zhao H B, Lpke G, Shi Z, Zhou S M 2013 Phys. Rev. Lett. 110 077203

    [13]

    Mendil J, Nieves P, Chubykalo-Fesenko O, Walowski J, Santos T, Pisana S, Mnzenberg M 2014 Sci. Rep. 4 3980

    [14]

    Moisan N, Malinowski G, Mauchain J, Hehn M, Vodungbo B, Lning J, Mangin S, Fullerton E E, Thiaville A 2014 Sci. Rep. 4 4658

    [15]

    Li X L, Xu X H, Wu H S 2005 Rare Metal Mater. Engi. 34 1509 (in Chinese) [李小丽, 许小红, 武海顺 2005 稀有金属材料与工程 34 1509]

    [16]

    Pan Q F, Zhang Z Y, Jin Z M, Lin X, Ma G H, Shen H, Hong F, Cheng Z X 2015 Europhys. Lett. 109 47002

    [17]

    Xu Y, Jin Z M, Zhang Z B, Zhang Z Y, Lin X, Ma G H, Cheng Z X 2014 Chin. Phys. B 23 044206

  • [1] 贾韫哲, 孟胜. 光激发下水体系的超快动力学.  , 2024, 73(8): 084204. doi: 10.7498/aps.73.20240047
    [2] 海帮, 张少锋, 张敏, 董达谱, 雷建廷, 赵冬梅, 马新文. 桌面飞秒极紫外光原子超快动力学实验装置.  , 2020, 69(23): 234208. doi: 10.7498/aps.69.20201035
    [3] 尚玲玲, 钱轩, 孙天娇, 姬扬. 超快光脉冲照射GaAs晶体产生的干涉环.  , 2020, 69(21): 214202. doi: 10.7498/aps.69.20201055
    [4] 许涌, 张帆, 张晓强, 杜寅昌, 赵海慧, 聂天晓, 吴晓君, 赵巍胜. 自旋电子太赫兹源研究进展.  , 2020, 69(20): 200703. doi: 10.7498/aps.69.20200623
    [5] 苏玉伦, 尉正行, 程亮, 齐静波. 基于超快自旋-电荷转换的太赫兹辐射源.  , 2020, 69(20): 204202. doi: 10.7498/aps.69.20200715
    [6] 林贤, 金钻明, 李炬赓, 郭飞云, 庄乃锋, 陈建中, 戴晔, 阎晓娜, 马国宏. 非线性克尔效应对飞秒激光偏振的超快调制.  , 2018, 67(23): 237801. doi: 10.7498/aps.67.20181450
    [7] 张顺浓, 朱伟骅, 李炬赓, 金钻明, 戴晔, 张宗芝, 马国宏, 姚建铨. 铁磁异质结构中的超快自旋流调制实现相干太赫兹辐射.  , 2018, 67(19): 197202. doi: 10.7498/aps.67.20181178
    [8] 樊正富, 谭智勇, 万文坚, 邢晓, 林贤, 金钻明, 曹俊诚, 马国宏. 低温生长砷化镓的超快光抽运-太赫兹探测光谱.  , 2017, 66(8): 087801. doi: 10.7498/aps.66.087801
    [9] 李杭, 张新惠. 稀磁半导体(Ga, Mn)As薄膜激光诱导超快磁化动力学过程拟合方法探究.  , 2015, 64(17): 177503. doi: 10.7498/aps.64.177503
    [10] 陈达鑫, 陈志峰, 徐初东, 赖天树. 铁磁薄膜中圆偏振光感应的瞬态磁光Kerr峰的物理起源.  , 2010, 59(10): 7362-7367. doi: 10.7498/aps.59.7362
    [11] 黄喜, 张新亮, 董建绩, 黄德修. 半导体光放大器超快折射率变化动态特性的研究.  , 2009, 58(5): 3185-3192. doi: 10.7498/aps.58.3185
    [12] 李培丽, 黄德修, 张新亮. 基于PolSK调制的四波混频型超快全光译码器.  , 2009, 58(3): 1785-1792. doi: 10.7498/aps.58.1785
    [13] 梁文锡, 朱鹏飞, 王瑄, 聂守华, 张忠超, 曹建明, 盛政明, 张杰. 用超快电子衍射技术研究Al薄膜的超快动力学行为.  , 2009, 58(8): 5546-5551. doi: 10.7498/aps.58.5546
    [14] 高瑞鑫, 徐振, 陈达鑫, 徐初东, 陈志峰, 刘晓东, 周仕明, 赖天树. GdFeCo磁光薄膜中RE-TM反铁磁耦合与激光感应超快磁化翻转动力学研究.  , 2009, 58(1): 580-584. doi: 10.7498/aps.58.580
    [15] 刘启明, 何漩, 干福熹, 钱士雄. 硫系非晶半导体薄膜中的超快光 Kerr效应.  , 2009, 58(2): 1002-1006. doi: 10.7498/aps.58.1002
    [16] 展晓元, 张 跃, 齐俊杰, 顾有松, 郑小兰. FePt薄膜中磁相互作用.  , 2007, 56(3): 1725-1729. doi: 10.7498/aps.56.1725
    [17] 王淑华, 查超麟, 高 静, 马 斌, 张宗芝, 金庆原. c轴垂直取向FePt薄膜的磁和磁光性能研究.  , 2007, 56(3): 1719-1724. doi: 10.7498/aps.56.1719
    [18] 蒋 中, 张新亮, 黄德修. 半导体光放大器亚皮秒量级超快动态特性的研究.  , 2006, 55(9): 4713-4719. doi: 10.7498/aps.55.4713
    [19] 周青春, 王嘉赋, 徐荣青. 自旋-轨道耦合对磁性绝缘体磁光Kerr效应的影响.  , 2002, 51(7): 1639-1644. doi: 10.7498/aps.51.1639
    [20] 尚小明, 王丛方, 王晶晶, 邹英华, 杨文军, 宋延林, 罗传秋, 陈惠英. 翠绿亚胺碱的超快光克尔和光致吸收效应.  , 1997, 46(12): 2363-2368. doi: 10.7498/aps.46.2363
计量
  • 文章访问数:  5912
  • PDF下载量:  244
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-05
  • 修回日期:  2016-04-08
  • 刊出日期:  2016-06-05

/

返回文章
返回
Baidu
map