搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

La1.3Sr1.7Mn2O7/SrTiO3-Nb异质结的整流和光伏特性

张强 王建元 罗炳成 邢辉 金克新 陈长乐

引用本文:
Citation:

La1.3Sr1.7Mn2O7/SrTiO3-Nb异质结的整流和光伏特性

张强, 王建元, 罗炳成, 邢辉, 金克新, 陈长乐

Rectifying behavior and photovoltage effect in La1.3Sr1.7Mn2O7/SrTiO3-Nb heterostructure

Zhang Qiang, Wang Jian-Yuan, Luo Bing-Cheng, Xing Hui, Jin Ke-Xin, Chen Chang-Le
PDF
导出引用
  • 采用脉冲激光沉积法在SrTiO3:0.7%Nb(100)单晶衬底上生长了La1.3Sr1.7Mn2O7(LSMO)薄膜, 并 研究了LSMO/SrTiO3-Nb异质结的输运性质和光伏效应. 研究发现, 异质结具有良好的整流特征和明显的光生伏特效应. 在532 nm激光辐照下, 光生电压随温度升高先增大后减小, 并且在150 K达到最大值400 mV, 此温度点与LSMO薄膜发生金属-绝缘体转变的温度一致, 这表明异质结的光生伏特效应受LSMO薄膜内部的输运特征调控. 进一步, 从光生电压随时间的变化曲线中分析发现, 上升沿符合一阶指数函数, 这与载流子的迁移过程相关; 而下降沿符合二阶指数函数, 这与结两侧载流子的外部回路中和以及材料内部的电子-空穴湮灭有关. 值得注意的是, 上升沿和下降沿的时间常数均随着温度先增大后减小, 且最大值均出现在LSMO薄膜的金属-绝缘转变温度.
    Perovskite oxide heterostructure possesses attractive magnetic, optical and electric properties, such as superconducting interface between two insulators, two-dimensional electron gas, positive giant magnetoresistance, photoelectric response characteristic, magnetocaloric effect, and coexistent different magnetic structures. Especially for the photoelectric response behaviors of A1-xAxMnO3 (A=La, Pr etc.; A = Sr, Ca etc.) perovskite manganese oxide heterostructure, one has made a systematic study on the photoelectric conversion efficiency, the photovoltaic response speed, and the in-plane lateral photovoltage. Besides A1-xAxMnO3 structure, manganese oxides can also exhibit the double layered perovskite structure A2-2xA1+2xMn2O7. Double layered perovskite structure can be regarded as the layers of perovskite and rock salt which are alternately stacked. This double layered perovskite manganese oxide (such as La2-2xSr1+2xMn2O7) is a natural structure of the tunnel structure: ferromagnetic metal layer-insulating layer-ferromagnetic metal layer. Double layered perovskite manganese oxide has not only the characteristics of giant magnetoresistance, but also the novel physical properties, such as persistent photoconductivity, etc. However, there are few reports on the physical properties of the double layered perovskite manganite oxides, heterostructures, especially the photovoltaic properties. In this work, the La1.3Sr1.7Mn2O7 (LSMO) film is deposited on an n-type SrTiO3-Nb (NSTO) single crystal substrate by a pulsed laser deposition method. Additionally, we study the transporting properties of LSMO/NSTO heterostructure and its photovoltaic effect. The heterostructure exhibits benign rectifying and palpable photovoltaic effect. Under the 532 nm laser irradiation, the photovoltage first increases and then decreases with temperature rising. The maximal photovoltage reaches 400 mV at 150 K which is consistent with the metal-insulator transition temperature of LSMO film. It is indicated that the photovoltaic effect of the heterostructure is regulated by the inner transporting characteristics of LSMO film. The dynamical process of the heterostructure, photovoltaic response, is analyzed. Meanwhile, by analyzing the relationship between the photovoltage and time, it is found that the rising edge fits to the first order exponential function, which is related to the migration of carriers. While the falling edge of second-order exponential function indicates that the compound of carriers has two different physical processes: 1 corresponds to the neutralization process of the carriers aggregated on both junction sides through the external circuit, and 2 corresponds to the annihilation process of non-equilibrium carriers. The carrier lifetime of our p-n junction is longer, on the order of ms, than those of other manganese oxides p-n junctions. Remarkably, the time constants of both the rising edge and falling edge first increase and then decrease as temperature increases, and the maximum values occur at the metal-insulator transition temperature of LSMO film.
      通信作者: 王建元, wangjy@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51402240,51471134,51202195,51172183,61471301,51572222)、陕西省自然基金(批准号:2014JQ6218)、中央高校基本科研业务费(批准号:3102014KYJD026)和西北工业大学翱翔新星人才计划资助的课题.
      Corresponding author: Wang Jian-Yuan, wangjy@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51402240, 51471134, 51202195, 51172183, 61471301, 51572222), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2014JQ6218), the Fundamental Research Fund for the Central Universities, China (Grant No. 3102014KYJD026), and the Ao Xiang Xin Xing Foundation in Northwestern Polytechnical University, China.
    [1]

    Reyren N, Thiel S, Caviglia A D, Fitting K L, Hammerl G, Richter C, Schneider C W, Kopp K, Retschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M, Mannhart J 2007 Science 317 1196

    [2]

    Herranz G, Basletic M, Bibes M, Carretero C, Tafra E, Jacquet E, Bouzehouane K, Deranlot C, Hamzic A, Broto J M, Barthelemy A, Fert A 2007 Phys. Rev. Lett. 98 216803

    [3]

    Ohtomo A, Hwang H Y 2006 Nature 441 120

    [4]

    Jin K J, Lu H B, Zhao K, Ge C, He M, Yang G Z 2009 Adv. Mater. 21 4636

    [5]

    Lu H B, Dai S Y, Chen Z H, Zhou Y L, Cheng B L, Jin K J, Liu L F, Yang G Z 2005 Appl. Phys. Lett. 86 032502

    [6]

    Sun J R, Xiong C M, Shen B G, Wang P Y, Weng Y X 2004 Appl. Phys. Lett. 84 2611

    [7]

    Liao L, Jin K J, Han P, Zhang L L, Lu H B, Ge C 2009 Chin. Phys. Lett. 26 057301

    [8]

    Zhou W J, Jin K J, Guo H Z, He X, He M, Xu X L, Lu H B, Yang G Z 2015 Appl. Phys. Lett. 106 131109

    [9]

    Zhong W, Au C T, Du Y W 2013 Chin. Phys. B 22 057501

    [10]

    Hu A Y, Qin G P, Wu Z M, Cui Y T 2015 Chin. Phys. B 24 067501

    [11]

    Assmann E, Blaha P, Laskowski R, Held K, Okamoto S, Sangiovanni G 2013 Phys. Rev. Lett. 110 078701

    [12]

    Wang L, Jin K J, Ge C, Wang C, Guo H Z, Lu H B, Yang G Z 2013 Appl. Phys. Lett. 102 252907

    [13]

    Wang L, Jin K J, Gu J X, Ma C, He X, Zhang J D, Wang C, Feng Y, Wan Q, Shi J A, Gu L, He M, Lu H B, Yang G Z 2014 Sci. Rep. 4 6980

    [14]

    Wang L, Jin K J, Xing J, Ge C, Lu H B, Zhou W J, Yang G Z 2013 Appl. Opt. 52 3473

    [15]

    Zhou W J, Jin K J, Guo H Z, Ge C, He M, Lu H B 2013 J. Appl. Phys. 114 224503

    [16]

    Jin K J, Zhao K, Lu H B, Liao L, Yang G Z 2007 Appl. Phys. Lett. 91 081906

    [17]

    Moritomo Y, Asamitsu A, Kuwahara H, Tokura Y 1996 Nature 380 141

    [18]

    Kimura T, Tomioka Y, Kuwahara H, Asamitsu A, Tamura M, Tokura Y 1996 Science 274 1698

    [19]

    Argyriou D N, Mitchell J F, Radaelli P G, Bordallo H N, Cox D E, Medarde M, Jorgensen J D 1999 Phys. Rev. B 59 8695

    [20]

    Han L A, Chen C L, Dong H Y, Wang J Y, Gao G M, Luo B C 2008 Acta Phys. Sin. 57 0541 (in Chinese) [韩立安, 陈长乐, 董慧迎, 王建元, 高国棉, 罗炳成 2008 57 0541]

    [21]

    Jin K X, Zhao S G, Chen C L, Tan X Y, Jia X W 2009 J. Phys. D: Appl. Phys. 42 015001

    [22]

    Liu Y X, Sun X C, Li B K, Lei Y 2014 JMCA 2 11651

    [23]

    Luo Z, Gao J 2006 J. Appl. Phys. 100 056104

    [24]

    Ma J J, Jin K X, Luo B C, Fan F, Xing H, Zhou C C, Chen C L 2010 Chin. Phys. Lett. 27 107304

    [25]

    Chen P, Jin K X, Chen C L, Tan X Y 2011 Acta Phys. Sin. 60 067303 (in Chinese) [陈鹏, 金克新, 陈长乐,谭兴毅 2011 60 067303]

    [26]

    Wang J Y, Zhai W, Luo B C, Jin K X, Chen C L 2014 Solid State Commun. 187 10

    [27]

    Liao L, Jin K J, Lu H B, Han P, He M, Yang G Z 2009 Solid State Commun. 149 915

    [28]

    Qiu J, Lu H B, Jin K J, He M, Xing J 2007 Physica B 400 66

    [29]

    Jin K X, Zhao S G, Tan X Y, Chen C L 2008 J. Phys. D: Appl. Phys. 41 045105

    [30]

    Yan Z J, Yuan X, Xu Y B, Liu L Q, Zhang X 2007 Appl. Phys. Lett. 91 104101

  • [1]

    Reyren N, Thiel S, Caviglia A D, Fitting K L, Hammerl G, Richter C, Schneider C W, Kopp K, Retschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M, Mannhart J 2007 Science 317 1196

    [2]

    Herranz G, Basletic M, Bibes M, Carretero C, Tafra E, Jacquet E, Bouzehouane K, Deranlot C, Hamzic A, Broto J M, Barthelemy A, Fert A 2007 Phys. Rev. Lett. 98 216803

    [3]

    Ohtomo A, Hwang H Y 2006 Nature 441 120

    [4]

    Jin K J, Lu H B, Zhao K, Ge C, He M, Yang G Z 2009 Adv. Mater. 21 4636

    [5]

    Lu H B, Dai S Y, Chen Z H, Zhou Y L, Cheng B L, Jin K J, Liu L F, Yang G Z 2005 Appl. Phys. Lett. 86 032502

    [6]

    Sun J R, Xiong C M, Shen B G, Wang P Y, Weng Y X 2004 Appl. Phys. Lett. 84 2611

    [7]

    Liao L, Jin K J, Han P, Zhang L L, Lu H B, Ge C 2009 Chin. Phys. Lett. 26 057301

    [8]

    Zhou W J, Jin K J, Guo H Z, He X, He M, Xu X L, Lu H B, Yang G Z 2015 Appl. Phys. Lett. 106 131109

    [9]

    Zhong W, Au C T, Du Y W 2013 Chin. Phys. B 22 057501

    [10]

    Hu A Y, Qin G P, Wu Z M, Cui Y T 2015 Chin. Phys. B 24 067501

    [11]

    Assmann E, Blaha P, Laskowski R, Held K, Okamoto S, Sangiovanni G 2013 Phys. Rev. Lett. 110 078701

    [12]

    Wang L, Jin K J, Ge C, Wang C, Guo H Z, Lu H B, Yang G Z 2013 Appl. Phys. Lett. 102 252907

    [13]

    Wang L, Jin K J, Gu J X, Ma C, He X, Zhang J D, Wang C, Feng Y, Wan Q, Shi J A, Gu L, He M, Lu H B, Yang G Z 2014 Sci. Rep. 4 6980

    [14]

    Wang L, Jin K J, Xing J, Ge C, Lu H B, Zhou W J, Yang G Z 2013 Appl. Opt. 52 3473

    [15]

    Zhou W J, Jin K J, Guo H Z, Ge C, He M, Lu H B 2013 J. Appl. Phys. 114 224503

    [16]

    Jin K J, Zhao K, Lu H B, Liao L, Yang G Z 2007 Appl. Phys. Lett. 91 081906

    [17]

    Moritomo Y, Asamitsu A, Kuwahara H, Tokura Y 1996 Nature 380 141

    [18]

    Kimura T, Tomioka Y, Kuwahara H, Asamitsu A, Tamura M, Tokura Y 1996 Science 274 1698

    [19]

    Argyriou D N, Mitchell J F, Radaelli P G, Bordallo H N, Cox D E, Medarde M, Jorgensen J D 1999 Phys. Rev. B 59 8695

    [20]

    Han L A, Chen C L, Dong H Y, Wang J Y, Gao G M, Luo B C 2008 Acta Phys. Sin. 57 0541 (in Chinese) [韩立安, 陈长乐, 董慧迎, 王建元, 高国棉, 罗炳成 2008 57 0541]

    [21]

    Jin K X, Zhao S G, Chen C L, Tan X Y, Jia X W 2009 J. Phys. D: Appl. Phys. 42 015001

    [22]

    Liu Y X, Sun X C, Li B K, Lei Y 2014 JMCA 2 11651

    [23]

    Luo Z, Gao J 2006 J. Appl. Phys. 100 056104

    [24]

    Ma J J, Jin K X, Luo B C, Fan F, Xing H, Zhou C C, Chen C L 2010 Chin. Phys. Lett. 27 107304

    [25]

    Chen P, Jin K X, Chen C L, Tan X Y 2011 Acta Phys. Sin. 60 067303 (in Chinese) [陈鹏, 金克新, 陈长乐,谭兴毅 2011 60 067303]

    [26]

    Wang J Y, Zhai W, Luo B C, Jin K X, Chen C L 2014 Solid State Commun. 187 10

    [27]

    Liao L, Jin K J, Lu H B, Han P, He M, Yang G Z 2009 Solid State Commun. 149 915

    [28]

    Qiu J, Lu H B, Jin K J, He M, Xing J 2007 Physica B 400 66

    [29]

    Jin K X, Zhao S G, Tan X Y, Chen C L 2008 J. Phys. D: Appl. Phys. 41 045105

    [30]

    Yan Z J, Yuan X, Xu Y B, Liu L Q, Zhang X 2007 Appl. Phys. Lett. 91 104101

  • [1] 王婉玉, 石凯熙, 李金华, 楚学影, 方铉, 匡尚奇, 徐国华. MoO3覆盖层对MoS2基光伏型光电探测器性能的影响.  , 2023, 72(14): 147301. doi: 10.7498/aps.72.20230464
    [2] 贾燕伟, 何健, 何萌, 朱肖华, 赵上熳, 刘金龙, 陈良贤, 魏俊俊, 李成明. h-BN/diamond异质结的制备与沟道载流子输运性质.  , 2022, 71(22): 228101. doi: 10.7498/aps.71.20220995
    [3] 刘川川, 郝飞翔, 殷月伟, 李晓光. Pt/BiFeO3/Nb:SrTiO3异质结的光伏效应和光调控整流特性.  , 2020, 69(12): 127301. doi: 10.7498/aps.69.20200280
    [4] 钟梓源, 何凯, 苑云, 汪韬, 高贵龙, 闫欣, 李少辉, 尹飞, 田进寿. 低温生长铝镓砷光折变效应的研究.  , 2019, 68(16): 167801. doi: 10.7498/aps.68.20190459
    [5] 左依凡, 李培丽, 栾开智, 王磊. 基于自准直效应的光子晶体异质结偏振分束器.  , 2018, 67(3): 034204. doi: 10.7498/aps.67.20171815
    [6] 孙晓东, 徐宝, 吴鸿业, 曹凤泽, 赵建军, 鲁毅. Tb掺杂双层锰氧化物La4/3Sr5/3Mn2O7的磁熵变和电输运性质.  , 2017, 66(15): 157501. doi: 10.7498/aps.66.157501
    [7] 温家乐, 徐志成, 古宇, 郑冬琴, 钟伟荣. 异质结碳纳米管的热整流效率.  , 2015, 64(21): 216501. doi: 10.7498/aps.64.216501
    [8] 魏纪周, 张铭, 邓浩亮, 楚上杰, 杜敏永, 严辉. Bi0.8Ba0.2FeO3/La0.7Sr0.3MnO3异质结制备及其交换偏置效应研究.  , 2015, 64(8): 088101. doi: 10.7498/aps.64.088101
    [9] 薛源, 郜超军, 谷锦华, 冯亚阳, 杨仕娥, 卢景霄, 黄强, 冯志强. 薄膜硅/晶体硅异质结电池中本征硅薄膜钝化层的性质及光发射谱研究.  , 2013, 62(19): 197301. doi: 10.7498/aps.62.197301
    [10] 张歆, 章晓中, 谭新玉, 于奕, 万蔡华. Al2O3增强的Co2-C98/Al2O3/Si异质结的光伏效应.  , 2012, 61(14): 147303. doi: 10.7498/aps.61.147303
    [11] 赵赓, 程晓曼, 田海军, 杜博群, 梁晓宇, 吴峰. V2O5电极修饰对C60/Pentacene双层异质结场效应晶体管性能的影响.  , 2012, 61(21): 218502. doi: 10.7498/aps.61.218502
    [12] 滕利华, 王霞, 赖天树. GaAs中带填充效应与带隙重整化效应的竞争.  , 2011, 60(4): 047201. doi: 10.7498/aps.60.047201
    [13] 吴利华, 章晓中, 于奕, 万蔡华, 谭新玉. a-C: Fe/AlOx/Si基异质结的光伏效应.  , 2011, 60(3): 037807. doi: 10.7498/aps.60.037807
    [14] 陈鹏, 金克新, 陈长乐, 谭兴毅. La0.88 Te0.12 MnO3/Si异质结的整流和光伏特性研究.  , 2011, 60(6): 067303. doi: 10.7498/aps.60.067303
    [15] 张伟英, 邬小鹏, 孙利杰, 林碧霞, 傅竹西. ZnO/Si异质结的光电转换特性研究.  , 2008, 57(7): 4471-4475. doi: 10.7498/aps.57.4471
    [16] 伍楷舜, 龙兴腾, 董建文, 陈弟虎, 汪河洲. 光子晶体异质结的位相和应用.  , 2008, 57(10): 6381-6385. doi: 10.7498/aps.57.6381
    [17] 刘江涛, 周云松, 王福合, 顾本源. 不同晶格光子晶体异质结的界面传导模.  , 2004, 53(6): 1845-1849. doi: 10.7498/aps.53.1845
    [18] 刘 红, 陈将伟. 纳米碳管异质结的结构及其电学性质.  , 2003, 52(3): 664-667. doi: 10.7498/aps.52.664
    [19] 封伟, 曹猛, 韦玮, 吴洪才, 万梅香, 吉野胜美. 有机聚合物受体给体复合体薄膜光伏电池性能研究.  , 2001, 50(6): 1157-1162. doi: 10.7498/aps.50.1157
    [20] 李国辉, 周世平, 徐得名. GaAs/AlGaAs异质结动力学行为研究.  , 2001, 50(8): 1567-1573. doi: 10.7498/aps.50.1567
计量
  • 文章访问数:  5742
  • PDF下载量:  192
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-13
  • 修回日期:  2016-02-22
  • 刊出日期:  2016-05-05

/

返回文章
返回
Baidu
map