-
By using first-principle with pseudopotential method based on the density functional perturbation theory, in this paper we calculate the electronic properties of wurtzite 6H-SiC crystal under the strong laser irradiation and analyze the band structure and the density of states. Calculations are performed in the ABINIT code with using the generalized gradient approximation for the exchange-correlation energy. And the input variable tphysel is used to set up a physical temperature of electrons Te. The value of Te is set to simulate the corresponding electron temperature of the crystal when irradiated by intensive laser within an ultrafast time. The highly symmetric points selected in the Brillouin zone are along -A-H-K--M-L-H in the energy band calculations. After testing, we can always obtain a good convergence of the total energy when choosing 18 Hartree cut-off energy and 333 k-point grid. By optimizing the structure and then using the optimized equilibrium lattice constant, the structural parameters and the corresponding electronic properties of 6H-SiC in the different electron-temperature conditions are studied. First of all, when the electron temperature stays in a range between 0 eV and 5.0 eV, we choose 23 groups of different electron temperatures to respectively test the values of equilibrium lattice parameters a and c of 6H-SiC. Within a temperature range between 0 eV and 4.25 eV, we continue to test 20 groups of the electrical properties of 6H-SiC under different electron temperatures, calculating the forbidden bandwidths at different electron temperatures and analyzing the changes of the bottom of conduction band and the top of valence band as the electron temperature goes up. Meanwhile, taking for sample two groups of the band structures in ranges of 0-2 eV and 3-4 eV, we comparatively analyze the changes of the energy and position of the bottom of conduction band and the top of valence band with electron temperature. The calculation results indicate that the equilibrium lattice parameters a and c of 6H-SiC gradually increase as electron temperature Te goes up. With the electron temperature going up, the top of valence band still stays there, while the bottom of conduction band shifts to the location between M and L point as electron temperature increases, leading to the fact that 6H-SiC is still an indirect band-gap semiconductor in a range of 0-3.87 eV, and as electron temperature reaches 3.89 eV and even more, the crystal turns into a direct band-gap semiconductor. With Te rising constantly, the bottom of the conduction band and the top of valence band both move in the direction of high energy or low energy. When Te is in excess of 4.25 eV, the top of valence band crosses the Fermi level. When Te varies in a range of 0-2.75 eV, the forbidden bandwidth increases with temperature rising, and when Te varies in a range of 2.75-3 eV, the forbidden bandwidth decreases slowly, and when Te varies in a range of 3-4.25 eV, the forbidden bandwidth quickly reduces. This variation shows that the metallic character of 6H-SiC crystal increases with electron temperature Te rising. The total densities of states (DOS) are calculated at Te = 0 eV and 5 eV. The DOS figures indicate that 6H-SiC is a semiconductor and its energy gap equals 2.1 eV. At Te = 5 eV, the gap disappears, presenting metallic properties. This result shows that the crystal covalent bonds are weakened and metallic bonds are enhanced with temperature increasing and the crystal experiences the process of melting, entering into metallic state.
-
Keywords:
- 6H-SiC /
- electronic properties /
- laser irradiation /
- density functional perturbation theory
[1] van Vechten J A, Tsu R, Saris F W 1979 Phys. Lett. A 74 422
[2] Shank C V, Yen R, Hirlimann C 1983 Phys. Rev. Lett. 50 454
[3] Saeta P, Wang J, Siegal Y, Bloembergen N, Mazur E 1991 Phys. Rev. Lett. 67 1023
[4] Larsson J, Heimann P A, Lindenberg A M, Schuck P J, Bucksbaum P H, Lee R W, Padmore H A, Wark J S, Falcone R W 1998 Appl. Phys. A: Mater. Sci. Proc. 66 587
[5] Uteza O P, Gamaly E G, Rode A V, Samoc M, Luther-Davies B 2004 Phys. Rev. B 70 054108
[6] Silvestrelli P L, Alavi A, Parrinello M, Frenkel D 1997 Phys. Rev. B 56 3806
[7] Silvestrelli P L, Alavi A, Parrinello M, Frenkel D 1996 Phys. Rev. Lett. 7 3149
[8] Wang M M, Gao T, Yu Y, Zeng X W 2012 Eur. Phys. J. Appl. Phys. 57 10104
[9] Deng F M, Gao T, Shen Y H, Gong Y R 2015 Acta Phys. Sin. 64 046301 (in Chinese) [邓发明, 高涛, 沈艳红, 龚艳蓉 2015 64 046301]
[10] Recoules V, Clrouin J, Zrah G, Anglade P M, Mazevet S 2006 Phys. Rev. Lett. 96 055503
[11] Zijlstra E S, Walkenhorst J, Gilfert C, Sippel C, Tws W, Garcia M E 2008 Appl. Phys. B 93 743
[12] Shen Y H, Gao T, Wang M M 2013 Comput. Mater. Sci. 77 372
[13] Shen Y H, Gao T, Wang M M 2013 Commun. Theor. Phys. Sci. 59 589
[14] Matsunami H 2006 Microelectron. Eng. 83 2
[15] Weitzel C E 1998 Mater. Sci. Formum. 907 264
[16] Costa A K, Camargo Jr S S 2003 Surf. Coat. Technol. 163 176
[17] Rottner K, Frischholz M, Myrtveit T, Mou D, Nordgren K, Henry A, Hallin C, Gustafsson U, Schoner A 1999 Mat. Sci. Eng. 61 330
[18] Jiang Z Y, Xu X H, Wu H S, Zhang F Q, Jin Z H 2002 Acta Phys. Sin. 51 1586 (in Chinese) [姜振益, 许小红, 武海顺, 张富强, 金志浩 2002 51 1586]
[19] Wu X J, Jia T Q, Zhao F L, Huang M, Chen H X, Xu N S, Xu Z Z 2007 Acta Optica Sinica 27 0105 (in Chinese) [吴晓君,贾天卿,赵福利,黄敏,陈洪新,许宁生, 徐至展2007 光学学报 27 0105]
[20] Wang S R, Liu Z L, Li J M, Wang L C, Xu P 2001 Chinese Journal of Semiconductors 22 507 (in Chinese) [王姝睿, 刘忠立, 李晋闽, 王良臣, 徐萍 2001 半导体学报 22 507]
[21] Wang S R, Liu Z L, Liang G R, Liang X Q, Ma H Z 2001 Chinese Journal of Semiconductors 22 0755 (in Chinese) [王姝睿, 刘忠立, 梁桂荣, 梁秀芹, 马红芝 2001 半导体学报 22 0755]
[22] Gonze X, Beuken J M, Caracas R, Detraux F, Fuchs M, Rignanese G M, Sindic L, Verstraete M, Zerah G, Jollet F, Torrent M, Roy A, Mikami M, Ghosez P, Raty J Y, Allan D C 2002 Comput. Mater. Sci. 25 478
[23] Troullier N, Martins J L 1990 Solid State Commun. 74 613
[24] Camp P E, Doren V, Devreese J T 1986 Phys. Rev. B 34 1314
[25] Kckell P, Wenzien B, Bechstedt F 1994 Phys. Rev. B 50 17037
[26] Feng S Q, Zhao J L, Cheng X L 2013 J. Appl. Phys. 113 023301
[27] Thompson M O, Galvin G J, Mayer J W, Peercy P S, Poate J M, Jacobson D C, Cullis A G, Chew N G 1984 Phys. Rev. Lett. 52 2360
[28] Poate J M, Brown W L 1982 Phys. Today 35 24
[29] Wessels B W, Gatos H C 1977 Phys. Solids 38 345
[30] Xie C K, Xu P S, Xu F Q 2003 Phys. B 336 284
[31] Gromov G G, Kapaev V V, Kopaev Y V, Kopaev Y V, Rudenko K V 1988 Zh. Eksp. Teor. Fiz. 94 101
[32] Sokolowski-Tinten K, Bialkowski J, von der Linde D 1995 Phys. Rev. B 51 14186
-
[1] van Vechten J A, Tsu R, Saris F W 1979 Phys. Lett. A 74 422
[2] Shank C V, Yen R, Hirlimann C 1983 Phys. Rev. Lett. 50 454
[3] Saeta P, Wang J, Siegal Y, Bloembergen N, Mazur E 1991 Phys. Rev. Lett. 67 1023
[4] Larsson J, Heimann P A, Lindenberg A M, Schuck P J, Bucksbaum P H, Lee R W, Padmore H A, Wark J S, Falcone R W 1998 Appl. Phys. A: Mater. Sci. Proc. 66 587
[5] Uteza O P, Gamaly E G, Rode A V, Samoc M, Luther-Davies B 2004 Phys. Rev. B 70 054108
[6] Silvestrelli P L, Alavi A, Parrinello M, Frenkel D 1997 Phys. Rev. B 56 3806
[7] Silvestrelli P L, Alavi A, Parrinello M, Frenkel D 1996 Phys. Rev. Lett. 7 3149
[8] Wang M M, Gao T, Yu Y, Zeng X W 2012 Eur. Phys. J. Appl. Phys. 57 10104
[9] Deng F M, Gao T, Shen Y H, Gong Y R 2015 Acta Phys. Sin. 64 046301 (in Chinese) [邓发明, 高涛, 沈艳红, 龚艳蓉 2015 64 046301]
[10] Recoules V, Clrouin J, Zrah G, Anglade P M, Mazevet S 2006 Phys. Rev. Lett. 96 055503
[11] Zijlstra E S, Walkenhorst J, Gilfert C, Sippel C, Tws W, Garcia M E 2008 Appl. Phys. B 93 743
[12] Shen Y H, Gao T, Wang M M 2013 Comput. Mater. Sci. 77 372
[13] Shen Y H, Gao T, Wang M M 2013 Commun. Theor. Phys. Sci. 59 589
[14] Matsunami H 2006 Microelectron. Eng. 83 2
[15] Weitzel C E 1998 Mater. Sci. Formum. 907 264
[16] Costa A K, Camargo Jr S S 2003 Surf. Coat. Technol. 163 176
[17] Rottner K, Frischholz M, Myrtveit T, Mou D, Nordgren K, Henry A, Hallin C, Gustafsson U, Schoner A 1999 Mat. Sci. Eng. 61 330
[18] Jiang Z Y, Xu X H, Wu H S, Zhang F Q, Jin Z H 2002 Acta Phys. Sin. 51 1586 (in Chinese) [姜振益, 许小红, 武海顺, 张富强, 金志浩 2002 51 1586]
[19] Wu X J, Jia T Q, Zhao F L, Huang M, Chen H X, Xu N S, Xu Z Z 2007 Acta Optica Sinica 27 0105 (in Chinese) [吴晓君,贾天卿,赵福利,黄敏,陈洪新,许宁生, 徐至展2007 光学学报 27 0105]
[20] Wang S R, Liu Z L, Li J M, Wang L C, Xu P 2001 Chinese Journal of Semiconductors 22 507 (in Chinese) [王姝睿, 刘忠立, 李晋闽, 王良臣, 徐萍 2001 半导体学报 22 507]
[21] Wang S R, Liu Z L, Liang G R, Liang X Q, Ma H Z 2001 Chinese Journal of Semiconductors 22 0755 (in Chinese) [王姝睿, 刘忠立, 梁桂荣, 梁秀芹, 马红芝 2001 半导体学报 22 0755]
[22] Gonze X, Beuken J M, Caracas R, Detraux F, Fuchs M, Rignanese G M, Sindic L, Verstraete M, Zerah G, Jollet F, Torrent M, Roy A, Mikami M, Ghosez P, Raty J Y, Allan D C 2002 Comput. Mater. Sci. 25 478
[23] Troullier N, Martins J L 1990 Solid State Commun. 74 613
[24] Camp P E, Doren V, Devreese J T 1986 Phys. Rev. B 34 1314
[25] Kckell P, Wenzien B, Bechstedt F 1994 Phys. Rev. B 50 17037
[26] Feng S Q, Zhao J L, Cheng X L 2013 J. Appl. Phys. 113 023301
[27] Thompson M O, Galvin G J, Mayer J W, Peercy P S, Poate J M, Jacobson D C, Cullis A G, Chew N G 1984 Phys. Rev. Lett. 52 2360
[28] Poate J M, Brown W L 1982 Phys. Today 35 24
[29] Wessels B W, Gatos H C 1977 Phys. Solids 38 345
[30] Xie C K, Xu P S, Xu F Q 2003 Phys. B 336 284
[31] Gromov G G, Kapaev V V, Kopaev Y V, Kopaev Y V, Rudenko K V 1988 Zh. Eksp. Teor. Fiz. 94 101
[32] Sokolowski-Tinten K, Bialkowski J, von der Linde D 1995 Phys. Rev. B 51 14186
计量
- 文章访问数: 6235
- PDF下载量: 163
- 被引次数: 0