-
基于传统磷酸盐玻璃组分, 通过引入SiO2获得了改性的PS系列玻璃, 并研究了Yb3+在PS系列玻璃中下能级Stark分裂及其光谱性质. 通过对该系列玻璃的吸收光谱、荧光光谱以及拉曼光谱的表征与分析确定了荧光光谱中最大波长处峰的属性. 结果表明: SiO2的引入显著增大了Yb3+下能级Stark分裂, 20 mol% SiO2可将Stark分裂值从670 cm-1提高到771 cm-1. 同时, 改进的磷酸盐玻璃光谱性能没有出现预期的降低现象, 反而得到了一定的改善. 实验证明: 对传统磷酸盐进行SiO2改性处理可以解决掺镱磷酸盐固有的较窄Stark分裂问题, 使其更适合作为高功率、高能量掺镱激光系统的增益介质材料.Up to now, high-energy large-scale Yb3+ laser has still faced to the fact that no proper gain media are available, though researchers made a more than ten year effort for it. Yb: fluorophosphate glass is the only material used in a laser system, reaching an output of more than 10 TW. As is well known, the thermal blocking of Yb3+ laser is a bottleneck in laser operation, which is closely related to the Stark splitting of Yb3+ in a gain medium. Conventional Yb: phosphate glass has the advantages in Yb3+ concentration, lifetime and cross section over silicate glass, however, its small Stark splitting is the main drawback that induces difficulties in realizing laser output at room temperature. Yb: phosphate glass will be a good gain medium for high power Yb3+ laser if the Stark splitting is improved. This study focuses on the enlargement of the Yb3+ Stark splitting in phosphate glass by introducing SiO2, thereby achieving a large Stark splitting property compared with the phosphate glass. The glass 60P2O5-7.5Al2O3-15K2O-17.5BaO-1Yb2O3 is used as the base glass, and the modified glass denoted as PS is obtained by doping a certain amount of SiO2. Such a glass is prepared by the conventional melting-quenching method. Lorentz fitting is performed to the absorption and fluorescence spectra for determining the Stark splitting scheme. Raman spectrum is used for the auxiliary judgment of the attributions of the different spectroscopic bands. Then the results are confirmed by the barycenter law of Yb3+ ion. Investigations show that the addition of SiO2 can enlarge the Stark splitting obviously from the original 670 to 771 cm-1 in PS3. Scalar crystal field parameter N_{J} and asymmetry degree around Yb3+ are also increased due to SiO2 incorporation. Meanwhile, spectroscopic properties of PS series glasses, such as fluorescence effective line width (Δλeff) and fluorescence lifetime (τf), are moderately enhanced. The glass transition temperature is improved greatly, which is very valuable for high power Yb3+ laser. These results suggest that the introduction of a second network former is an effective way to enlarge the Stark splitting of Yb3+ in phosphate glass. Next, our investigation will focus on preparing the high-homogeneity SiO2 modified phosphate glasses and the corresponding laser experiments.
-
Keywords:
- Yb3+-material /
- Stark splitting /
- phosphate glass
[1] Boulon G 2008 J. Alloy. Compd . 451 1
[2] Hornung M, Keppler S, Bödefeld R, Kessler A, Liebetrau H, Körner J, Hellwing M, Schorcht F, Jäckel O, Sävert A, Polz J, Arunachalam A K, Hein J, Kaluza M C 2013 Opt. Lett. 38 718
[3] Lin S B, Wang P F, She J B, Guo H T, Xu S N, Yu C L, Liu C X, Peng B 2014 Chin. Phys. B 23 097801
[4] Sun Y J, Lee C K, Xu J L, Zhu Z J, Wang Y Q, Gao S F, Xia H P, You Z Y, Tu C Y 2015 Photon. Res. 3 A97
[5] Li J F, Gao P, Zheng L H, Su L B, Xu J, Liang X Y 2015 Chin. Opt. Lett. 13 011403
[6] Röser F, Loeser M, Albach D, Siebold M, Grimm S, Brand D, Schwuchow A, Langner A, Schötz G, Schönfeld D, Schramm U 2015 Opt. Mater. Express 5 704
[7] Wang J L, Wang X L, He B R, Zhu J F, Wei Z Y, Wang Y G 2015 Chin. Phys. B 24 097601
[8] Tian W L, Zhu J F, Wang Z H, Wang J L, Wei Z Y 2014 Chin. Opt. Lett. 12 031401
[9] Pirzio F, Cafiso S D D D, Kemnitzer M, Kienle F, Guandalini A, Au J A D, Agnesi A 2015 J. Opt. Soc. Am. B 32 2321
[10] Zhao H, Major A 2013 Opt. Express 21 31846
[11] Aballea P, Suganuma A, Druon F, Hostalrich J, Georges P, Gredin P, Mortier M 2015 Optica 2 288
[12] Fries C, Weitz M, Theobald C, Menar PVLO, Bartschke J, L'huillier J A 2015 Conference on Solid State Lasers XXIV-Technology and Devices San Francisco, February 7, 2015 93421O-1
[13] Dai S X, Sugiyama A, Hu L L, Liu Z P, Huang G S, Jiang Z H 2002 J. Non-Cryst. Solids 311 138
[14] Koch R, Clarkson W A, Hanna D C, Jiang S, Myers M J, Rhonehouse D, Hamlin S J, Griebner U, Schönnagel H 1997 Opt. Commun. 134 175
[15] Haumesser P H, Gaumé R, Viana B, Antic-Fidancev E, Vivien D 2001 J. Phys.-Condens. Mat. 13 5427
[16] Zhang L Y, Xue T F, He D B, Guzik M, Boulon G 2015 Opt. Express 23 1505
[17] Yang B H, Liu X Q, Wang X, Zhang J J, Hu L L, Zhang L Y 2014 Opt. Lett. 39 1772
[18] Guyot Y, Canibano H, Goutaudier C, Novoselov A, Yoshikawa A, Fukuda T, Boulon G 2006 Opt. Mater. 28 1658
[19] Auzel F 2001 J. Lumin. 93 129
[20] Robinson C C, Fournier J T 1970 J. Phys. Chem. Solids 31 895
[21] Gan F X 1995 J. Non-Cryst. Solid. 184 9
[22] Gan F X 1982 Optical Glass (Vol. 1) (Beijing:Science Press) p63 (in Chinese) [干福熹 1982 光学玻璃(上卷)(北京:科学出版社) 第63页]
[23] Lee E T Y, Taylor E R M 2006 Opt. Mater. 28 200
-
[1] Boulon G 2008 J. Alloy. Compd . 451 1
[2] Hornung M, Keppler S, Bödefeld R, Kessler A, Liebetrau H, Körner J, Hellwing M, Schorcht F, Jäckel O, Sävert A, Polz J, Arunachalam A K, Hein J, Kaluza M C 2013 Opt. Lett. 38 718
[3] Lin S B, Wang P F, She J B, Guo H T, Xu S N, Yu C L, Liu C X, Peng B 2014 Chin. Phys. B 23 097801
[4] Sun Y J, Lee C K, Xu J L, Zhu Z J, Wang Y Q, Gao S F, Xia H P, You Z Y, Tu C Y 2015 Photon. Res. 3 A97
[5] Li J F, Gao P, Zheng L H, Su L B, Xu J, Liang X Y 2015 Chin. Opt. Lett. 13 011403
[6] Röser F, Loeser M, Albach D, Siebold M, Grimm S, Brand D, Schwuchow A, Langner A, Schötz G, Schönfeld D, Schramm U 2015 Opt. Mater. Express 5 704
[7] Wang J L, Wang X L, He B R, Zhu J F, Wei Z Y, Wang Y G 2015 Chin. Phys. B 24 097601
[8] Tian W L, Zhu J F, Wang Z H, Wang J L, Wei Z Y 2014 Chin. Opt. Lett. 12 031401
[9] Pirzio F, Cafiso S D D D, Kemnitzer M, Kienle F, Guandalini A, Au J A D, Agnesi A 2015 J. Opt. Soc. Am. B 32 2321
[10] Zhao H, Major A 2013 Opt. Express 21 31846
[11] Aballea P, Suganuma A, Druon F, Hostalrich J, Georges P, Gredin P, Mortier M 2015 Optica 2 288
[12] Fries C, Weitz M, Theobald C, Menar PVLO, Bartschke J, L'huillier J A 2015 Conference on Solid State Lasers XXIV-Technology and Devices San Francisco, February 7, 2015 93421O-1
[13] Dai S X, Sugiyama A, Hu L L, Liu Z P, Huang G S, Jiang Z H 2002 J. Non-Cryst. Solids 311 138
[14] Koch R, Clarkson W A, Hanna D C, Jiang S, Myers M J, Rhonehouse D, Hamlin S J, Griebner U, Schönnagel H 1997 Opt. Commun. 134 175
[15] Haumesser P H, Gaumé R, Viana B, Antic-Fidancev E, Vivien D 2001 J. Phys.-Condens. Mat. 13 5427
[16] Zhang L Y, Xue T F, He D B, Guzik M, Boulon G 2015 Opt. Express 23 1505
[17] Yang B H, Liu X Q, Wang X, Zhang J J, Hu L L, Zhang L Y 2014 Opt. Lett. 39 1772
[18] Guyot Y, Canibano H, Goutaudier C, Novoselov A, Yoshikawa A, Fukuda T, Boulon G 2006 Opt. Mater. 28 1658
[19] Auzel F 2001 J. Lumin. 93 129
[20] Robinson C C, Fournier J T 1970 J. Phys. Chem. Solids 31 895
[21] Gan F X 1995 J. Non-Cryst. Solid. 184 9
[22] Gan F X 1982 Optical Glass (Vol. 1) (Beijing:Science Press) p63 (in Chinese) [干福熹 1982 光学玻璃(上卷)(北京:科学出版社) 第63页]
[23] Lee E T Y, Taylor E R M 2006 Opt. Mater. 28 200
计量
- 文章访问数: 5777
- PDF下载量: 162
- 被引次数: 0