-
传感器作为物联网技术的基石, 在人们的生产生活中发挥着重大作用. 其中, 基于隧穿磁阻效应(tunneling magnetoresistance, TMR)的磁传感器具有灵敏度高、尺寸小、功耗低等优点, 在导航定位、生物医学、电流检测和无损检测等领域具有极大的应用前景. 本综述以TMR传感器技术路线的发展为核心, 囊括了从基本传感单元到三维空间磁场检测, 再到实际应用的多个研究重点. 首先, 介绍了TMR传感器发展历程并阐明其基本工作原理, 讨论了提高单个传感单元磁隧道结输出线性度的方法. 接下来, 详细介绍了传感器的重要电路结构—惠斯通电桥, 以及制备TMR全桥结构的多种工艺方法. 进一步, 从三维空间磁场检测这一市场需求入手, 深入讨论了基于TMR传感器的三维传感结构的设计和制备方法. 同时, 以传感器灵敏度和噪声水平这两大基本性能为切入点, 列举了TMR传感器性能的优化方案. 最后, 本文对TMR传感器的应用展开了详细介绍, 以自旋麦克风, 生物传感器两个新兴应用为例, 对TMR传感器未来在物联网中的发展和应用进行了展望.Sensors play an important role in Internet of Things (IoT) industry and account for a rapidly growing market share. Among them, the magnetic sensor based on tunneling magnetoresistance (TMR) effect possesses great potential applications in the fields of biomedical, navigation, positioning, current detection, and non-destructive testing due to its extremely high sensitivity, small device size and low power consumption. In this paper, we focus on the development of TMR sensor technology routes, covering a series of research advances from a sensor transducer to three-dimensional magnetic field detection, and then to the applications. Firstly, we recall the development history of TMR sensors, explain its working principle, and discuss the method to improve the output linearity of single magnetic tunnel junction. Next, we state the Wheatstone-bridge structure, which can inhibit temperature drift in detail and review several methods of fabricating the full bridge of TMR sensors. Furthermore, for the market demand of three-dimensional magnetic field detection, we summarize the methods of designing and fabricating three-dimensional sensing structure of the TMR sensor. At the same time, we list several optimization schemes of TMR sensor performance in terms of sensitivity and noise level. Finally, we discuss two types of emerging applications of TMR sensors in recent years. The TMR sensors can also be used in intelligence healthcare due to their ultra-high sensitivity. In addition, devices from the combination of spin materials and MEMS structure have attracted wide attention, especially, because of the large commercial market of microphones, spin-MEMS microphones utilized TMR techniques will be the next research hotspot in this interdisciplinary field.
-
Keywords:
- tunneling magnetoresistance sensors /
- linearization methods /
- sensor noise /
- intelligent applications
[1] Liu X, Lam K H, Zhu K, Zheng C, Li X, Du Y, Liu C, Pong P W T 2019 IEEE Trans. Magn. 55 1
Google Scholar
[2] Mohsen A, Al-Mahdawi M, Fouda M M, Oogane M, Ando Y, Fadlullah Z M 2020 ICC 2020-2020 IEEE International Conference on Communications (ICC) Dublin Ireland, 27 July 2020 pp1–6
[3] Leroy P, Coillot C, Mosser V, Roux A, Chanteur G 2007 Sens. Lett. 5 162
Google Scholar
[4] Thomson W 1857 Proc. R. Soc. London 8 546
[5] Baibich M N, Broto J M, Fert A, Van Dau F N, Petroff F, Etienne P, Creuzet G, Friederich A, Chazelas J 1988 Phys. Rev. Lett. 61 2472
Google Scholar
[6] Binasch G, Grünberg P, Saurenbach F, Zinn W 1989 Phys. Rev. B 39 4828
[7] Julliere M 1975 Phys. Lett. A 54 225
Google Scholar
[8] Miyazaki T, Tezuka N 1995 J. Magn. Magn. Mater. 139 L231
Google Scholar
[9] Moodera J S, Kinder L R, Wong T M, Meservey R 1995 Phys. Rev. Lett. 74 3273
Google Scholar
[10] Parkin S S, Kaiser C, Panchula A, Rice P M, Hughes B, Samant M, Yang S H 2004 Nat. Mater. 3 862
Google Scholar
[11] Ikeda S, Hayakawa J, Ashizawa Y, Lee Y, Miura K, Hasegawa H, Tsunoda M, Matsukura F, Ohno H 2008 Appl. Phys. Lett. 93 082508
Google Scholar
[12] Cao Z, Chen W, Lu S, Yan S, Zhang Y, Zhou Z, Yang Y, Li Z, Zhao W, Leng Q 2021 Appl. Phys. Lett. 118 122402
Google Scholar
[13] Chen W, Yan S, Yang Y, Cao Z, Lin Y, Zhou Z, Yan S, Leng Q 2021 2021 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM) Chengdu China, 8–11 April 2021 pp1–3
[14] Tumanski S 2016 Handbook of Magnetic Measurements (CRC Press) pp159–256
[15] Su D, Wu K, Saha R, Peng C, Wang J P 2020 Micromachines 11 34
[16] Wang M, Wang Y, Peng L, Ye C 2019 IEEE Sens. J. 19 9610
Google Scholar
[17] Ichkitidze L, Bazaev N, Telyshev D, Preobrazhensky R, Gavrushina M 2015 Biomed. Eng. 48 305
Google Scholar
[18] Markevicius V, Navikas D, Zilys M, Andriukaitis D, Valinevicius A, Cepenas M 2016 Sensors 16 78
Google Scholar
[19] [20] Rosado L S, Cardoso F A, Cardoso S, Ramos P M, Freitas P P, Piedade M S 2014 Sens. Actuators, A 212 58
Google Scholar
[21] Sun X, Huang Q, Hou Y, Jiang L, Pong P W 2013 IEEE Trans. Power Delivery 28 2145
Google Scholar
[22] Jin Z, Mohd Noor Sam M A I, Oogane M, Ando Y 2021 Sensors 21 668
Google Scholar
[23] Wang C, Su W, Hu Z, Pu J, Guan M, Peng B, Li L, Ren W, Zhou Z, Jiang Z 2018 IEEE Trans. Magn. 54 1
Google Scholar
[24] Diao Z, Zheng Y, Kaiser C, Jiang X, Chen L, Roy A, Chien C, Wang M, Gider S, Mauri D 2015 2015 IEEE International Magnetics Conference (INTERMAG) Beijing China, 11–15 May 2015 p1
[25] Liu X, Ren C, Xiao G 2002 J. Appl. Phys. 92 4722
Google Scholar
[26] Chaves R, Cardoso S, Ferreira R, Freitas P 2011 J. Appl. Phys. 109 07E506
Google Scholar
[27] Silva A V, Leitao D C, Valadeiro J, Amaral J, Freitas P P, Cardoso S 2015 Eur. Phys. J. :Appl. Phys. 72 10601
Google Scholar
[28] Wiśniowski P, Almeida J, Cardoso S, Barradas N, Freitas P 2008 J. Appl. Phys. 103 07A910
Google Scholar
[29] Van Driel J, De Boer F, Lenssen K M, Coehoorn R 2000 J. Appl. Phys. 88 975
Google Scholar
[30] van Dijken S, Coey J 2005 Appl. Phys. Lett. 87 022504
Google Scholar
[31] Wei H, Qin Q, Wen Z, Han X, Zhang XG 2009 Appl. Phys. Lett. 94 172902
Google Scholar
[32] Nakano T, Oogane M, Furuichi T, Ando Y 2017 Appl. Phys. Lett. 110 012401
Google Scholar
[33] Yuan L, Liou SH, Wang D 2006 Phys. Rev. B 73 134403
Google Scholar
[34] Reig C, Cardoso S, Mukhopadhyay S C 2013 Smart Sensors, Measurement and Instrumentation (Springer) pp103–131
[35] Cao J, Freitas P 2010 J. Appl. Phys. 107 09E712
Google Scholar
[36] Berthold I, Müller M, Klötzer S, Ebert R, Thomas S, Matthes P, Albrecht M, Exner H 2014 Appl. Surf. Sci. 302 159
Google Scholar
[37] Franco F, Silva M, Cardoso S, Freitas P P 2021 Appl. Phys. Lett. 118 072401
Google Scholar
[38] Luong V, Jeng J, Lai B, Lu C 2015 2015 IEEE International Magnetics Conference (INTERMAG) Beijing China, 11–15 May 2015 p1
[39] Freitas P P, Ferreira R, Cardoso S 2016 Proc. IEEE 104 1894
Google Scholar
[40] Yan S, Cao Z, Guo Z, Zheng Z, Cao A, Qi Y, Leng Q, Zhao W 2018 Sensors 18 1832
Google Scholar
[41] Cao Z, Wei Y, Chen W, Yan S, Lin L, Li Z, Wang L, Yang H, Leng Q, Zhao W 2021 Sci. China: Inf. Sci. 64 1
[42] Luong V S, Jeng J T, Lai B L, Hsu J H, Chang C R, Lu C C 2015 IEEE Trans. Magn. 51 4004504
Google Scholar
[43] Lu C C, Huang J 2015 Sensors 15 14727
Google Scholar
[44] Cerro G, Ferrigno L, Laracca M, Milano F, Bellitti P, Serpelloni M, Piedrafita O C 2020 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Dubrovnik Croatia, 25–28 May 2020 pp1–6
[45] [46] Chiang C Y, Jeng J T, Lai B L, Luong V S, Lu C C 2015 J. Appl. Phys. 117 17A321
Google Scholar
[47] Su Y H, Lu C C, Jeng J T, Hsu J H, Liao M H, Wu J C, Lai M H, Chang C R 2017 IEEE Trans. Nanotechnol. 17 11
Google Scholar
[48] Yan S, Zhou Z, Cao Z, Yang Y, Li Z, Chen W, Leng Q, Zhao W 2021 2021 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM) Chengdu China, 8–11 April 2021 pp1–3
[49] Li R, Zhang S, Luo S, Guo Z, Xu Y, Ouyang J, Song M, Zou Q, Xi L, Yang X 2021 Nat. Electron. 4 179
Google Scholar
[50] TDK 2020 TDK Product Catalog [EB/OL]
[51] Lee Y, Hayakawa J, Ikeda S, Matsukura F, Ohno H 2007 Appl. Phys. Lett. 90 212507
Google Scholar
[52] Almeida J, Freitas P 2009 J. Appl. Phys. 105 07E722
Google Scholar
[53] Orgassa D, Fujiwara H, Schulthess T, Butler W 1999 Phys. Rev. B 60 13237
Google Scholar
[54] Tezuka N, Ikeda N, Mitsuhashi F, Sugimoto S 2009 Appl. Phys. Lett. 94 162504
Google Scholar
[55] Fujiwara K, Oogane M, Yokota S, Nishikawa T, Naganuma H, Ando Y 2012 J. Appl. Phys. 111 07C710
Google Scholar
[56] Lei Z, Li G, Egelhoff W F, Lai P, Pong P W 2011 IEEE Trans. Magn. 47 602
Google Scholar
[57] Nyquist H 1928 Phys. Rev. 32 110
Google Scholar
[58] Johnson J B 1928 Phys. Rev. 32 97
Google Scholar
[59] Ingvarsson S, Xiao G, Parkin S, Gallagher W, Grinstein G, Koch R 2000 Phys. Rev. Lett. 85 3289
Google Scholar
[60] Smith N, Arnett P 2001 Appl. Phys. Lett. 78 1448
Google Scholar
[61] Egelhoff Jr W, Pong P, Unguris J, McMichael R, Nowak E, Edelstein A, Burnette J, Fischer G 2009 Sens. Actuators, A 155 217
Google Scholar
[62] Freitas P, Ferreira R, Cardoso S, Cardoso F 2007 J. Phys.: Condens. Matter 19 165221
Google Scholar
[63] Nowak E, Weissman M, Parkin S 1999 Appl. Phys. Lett. 74 600
Google Scholar
[64] Almeida J, Wisniowski P, Freitas P 2008 IEEE Trans. Magn. 44 2569
Google Scholar
[65] Liou S H, Zhang R, Russek S E, Yuan L, Halloran S T, Pappas D P 2008 J. Appl. Phys. 103 07E920
Google Scholar
[66] Kandiah K, Whiting F 1978 Solid·State Electron. 21 1079
[67] Xi H, Loven J, Netzer R, Guzman J I, Franzen S, Mao S 2006 J. Phys. D: Appl. Phys. 39 2024
Google Scholar
[68] Polovy H, Guerrero R, Scola J, Pannetier-Lecoeur M, Fermon C, Feng G, Fahy K, Cardoso S, Almeida J, Freitas P 2010 J. Magn. Magn. Mater. 322 1624
Google Scholar
[69] Torrejon J, Solignac A, Chopin C, Moulin J, Doll A, Paul E, Fermon C, Pannetier-Lecoeur M 2020 Phys. Rev. Appl. 13 034031
Google Scholar
[70] Garzon S, Chen Y, Webb R A 2007 Physica E (Amsterdam, Neth. ) 40 133
[71] Fermon C, Pannetier-Lecoeur M 2013 Giant Magnetoresistance (GMR) Sensors (Springer) pp47–70
[72] Wisniowski P, Almeida J M, Freitas P P 2008 IEEE Trans. Magn. 44 2551
Google Scholar
[73] Deak J G, Zhou Z, Shen W 2017 AIP Adv. 7 056676
Google Scholar
[74] Moulin J, Doll A, Paul E, Pannetier-Lecoeur M, Fermon C, Sergeeva-Chollet N, Solignac A 2019 Appl. Phys. Lett. 115 122406
Google Scholar
[75] Huang L, Yuan Z, Tao B, Wan C, Guo P, Zhang Q, Yin L, Feng J, Nakano T, Naganuma H 2017 J. Appl. Phys. 122 113903
Google Scholar
[76] Cui Y, Khodadadi B, Schäfer S, Mewes T, Lu J, Wolf S A 2013 Appl. Phys. Lett. 102 162403
Google Scholar
[77] Valadeiro J P, Amaral J, Leitao D C, Ferreira R, Cardoso S F, Freitas P J 2015 IEEE Trans. Magn. 51 4400204
Google Scholar
[78] Tondra M, Daughton J M, Wang D, Beech R S, Fink A, Taylor J A 1998 J. Appl. Phys. 83 6688
Google Scholar
[79] Guerrero R, Pannetier-Lecoeur M, Fermon C, Cardoso S, Ferreira R, Freitas P 2009 J. Appl. Phys. 105 113922
Google Scholar
[80] Edelstein A S, Fischer G A 2002 J. Appl. Phys. 91 7795
Google Scholar
[81] Edelstein A, Fischer G, Pedersen M, Nowak E, Cheng S F, Nordman C 2006 J. Appl. Phys. 99 08B317
Google Scholar
[82] Guedes A, Jaramillo G, Buffa C, Vigevani G, Cardoso S, Leitao D, Freitas P, Horsley D 2012 IEEE Trans. Magn. 48 4115
Google Scholar
[83] Hu J, Pan M, Tian W, Chen D, Zhao J, Luo F 2012 Appl. Phys. Lett. 100 244102
Google Scholar
[84] Hu J, Pan M, Tian W, Chen D, Zhao J 2012 Rev. Sci. Instrum. 83 055009
Google Scholar
[85] Du Q, Hu J, Sun K, Chen D, Pan L, Che Y, Zhang X, Li P, Zhang B, Peng J 2019 IEEE Electron Device Lett. 40 1824
Google Scholar
[86] Hu J, Du Q, Pan M, Li P, Sun K, Wang W, Zhang J, Peng J, Qiu W, Chen D 2020 2020 IEEE Sensors Rotterdam Netherlands, October 25–28, 2020 pp1–4
[87] Zhang J, Pan M, Du Q, Hu J, Sun K, Yu Y, Zhang X, Luo H 2021 Micromachines 12 722
Google Scholar
[88] Liu Z, Chen J, Zou X 2021 Sensors 21 87
[89] Pan L, Pan M, Hu J, Hu Y, Che Y, Yu Y, Wang N, Qiu W, Li P, Peng J 2020 Sensors 20 1440
Google Scholar
[90] Che Y, Hu J, Pan L, Li P, Pan M, Chen D, Sun K, Zhang X, Du Q, Yu Y 2020 AIP Adv. 10 105032
Google Scholar
[91] Zheng C, Zhu K, De Freitas S C, Chang J Y, Davies J E, Eames P, Freitas P P, Kazakova O, Kim C, Leung C W 2019 IEEE Trans. Magn. 55 0800130
Google Scholar
[92] Song D, Nowak J, Larson R, Kolbo P, Chellew R 2000 IEEE Trans. Magn. 36 2545
Google Scholar
[93] Vopsaroiu M, Blackburn J, Cain M G 2007 J. Phys. D:Appl. Phys. 40 5027
Google Scholar
[94] Hayakawa J, Ikeda S, Lee Y M, Sasaki R, Meguro T, Matsukura F, Takahashi H, Ohno H 2005 Jpn. J. Appl. Phys. 44 L1267
Google Scholar
[95] Diao Z, Apalkov D, Pakala M, Ding Y, Panchula A, Huai Y 2005 Appl. Phys. Lett. 87 232502
Google Scholar
[96] Aurelio D, Torres L, Finocchio G 2009 J. Magn. Magn. Mater. 321 3913
Google Scholar
[97] Jeng J T, Lu C C, Hsu H Y 2017 Measurement 109 297
Google Scholar
[98] Deak J, Jin I 2019 IEEE Trans. Magn. 55 6700104
Google Scholar
[99] Hainz S, de la Torre E, Guettinger J 2021 AmE 2021-Automotive Meets Electronics; 12th GMM-Symposium online, March 10–11, 2021 pp1–4
[100] Rohrmann K, Sandner M, Meier P, Prochaska M 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Houston TX USA, May 14–17, 2018 pp1–6
[101] Guo D, Cardoso F, Ferreira R, Paz E, Cardoso S, Freitas P 2014 J. Appl. Phys. 115 17E513
Google Scholar
[102] Lawrence D, Donnal J S, Leeb S 2016 IEEE Sens. J. 16 6095
Google Scholar
[103] Simmons L P, Welsh J S 2013 5th International Conference on Computational Intelligence, Modelling and Simulation Seoul Korea (South), September 24–25, 2013 pp69–74
[104] Sedaghat S B, Ganji B A 2019 Microsyst. Technol. 25 217
Google Scholar
[105] Fuji Y, Hara M, Higashi Y, Kaji S, Masunishi K, Nagata T, Yuzawa A, Otsu K, Okamoto K, Baba S 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) Kaohsiung Taiwan, June 18–22, 2017 pp63–66
[106] Higashi Y, Fuji Y, Kaji S, Masunishi K, Nagata T, Yuzawa A, Otsu K, Okamoto K, Baba S, Ono T 2018 IEEE Micro Electro Mechanical Systems (MEMS) Belfast UK, January 21–25, 2018 pp1060–1063
[107] Fuji Y, Higashi Y, Kaji S, Masunishi K, Yuzawa A, Nagata T, Okamoto K, Baba S, Ono T, Hara M 2018 IEEE International Electron Devices Meeting (IEDM) San Francisco CA USA, December 1–5, 2018 pp4.2.1–4.2. 4
[108] Bermúdez G S C, Fuchs H, Bischoff L, Fassbender J r, Makarov D 2018 Nat. Electron. 1 589
Google Scholar
[109] Tanwear A, Liang X, Liu Y, Vuckovic A, Ghannam R, Böhnert T, Paz E, Freitas P P, Ferreira R, Heidari H 2020 IEEE Trans. Biomed. Circuits Syst. 14 1299
Google Scholar
[110] Fujiwara K, Oogane M, Kanno A, Imada M, Jono J, Terauchi T, Okuno T, Aritomi Y, Morikawa M, Tsuchida M 2018 Appl. Phys. Express 11 023001
Google Scholar
[111] Hajba L, Guttman A 2016 Biotechnol. Adv. 34 354
Google Scholar
[112] Liu W J, Ou S L, Chang Y H, Chen Y T, Liang Y C, Chang C Y, Chu C L, Wu T H 2021 Surf. Eng. 37 429
Google Scholar
[113] Kim K, Hall D A, Yao C, Lee J R, Ooi C C, Bechstein D J, Guo Y, Wang S X 2018 Sci. Rep. 8 1
-
图 9 磁通聚集器的结构图以及周围磁通量分布情况[52] (a) 光学显微镜下磁通聚集器和磁隧道结; (b) 磁通聚集器两端的模拟磁通量浓度; (c) 模拟磁通量浓度区域放大图
Fig. 9. The structure diagram of the magnetic flux concentrator and the surrounding magnetic flux distribution[52]: (a) Magnetic flux concentrator and magnetic tunnel junction under light microscope; (b) simulated magnetic flux concentrations at both ends of the flux concentrator; (c) enlarged image of simulated magnetic flux concentration area.
图 14 电调制磁通聚集器原理图[89] (a) 电调制磁通聚集器结构图; (b) 电压为0时的磁通分布; (c) 电压为Vi时的磁通分布; (d) 磁通调制膜的磁导率和空气间隙中的磁通量随着电压发生周期性变化
Fig. 14. Schematic diagram of magnetic flux electric modulation[89]: (a) Structure diagram of MFEM; (b) the magnetic flux distribution at voltage = 0; (c) the magnetic flux distribution at voltage = Vi; (d) the permeability of the FXF and the magnetic flux in the air gap change periodically with the voltage.
-
[1] Liu X, Lam K H, Zhu K, Zheng C, Li X, Du Y, Liu C, Pong P W T 2019 IEEE Trans. Magn. 55 1
Google Scholar
[2] Mohsen A, Al-Mahdawi M, Fouda M M, Oogane M, Ando Y, Fadlullah Z M 2020 ICC 2020-2020 IEEE International Conference on Communications (ICC) Dublin Ireland, 27 July 2020 pp1–6
[3] Leroy P, Coillot C, Mosser V, Roux A, Chanteur G 2007 Sens. Lett. 5 162
Google Scholar
[4] Thomson W 1857 Proc. R. Soc. London 8 546
[5] Baibich M N, Broto J M, Fert A, Van Dau F N, Petroff F, Etienne P, Creuzet G, Friederich A, Chazelas J 1988 Phys. Rev. Lett. 61 2472
Google Scholar
[6] Binasch G, Grünberg P, Saurenbach F, Zinn W 1989 Phys. Rev. B 39 4828
[7] Julliere M 1975 Phys. Lett. A 54 225
Google Scholar
[8] Miyazaki T, Tezuka N 1995 J. Magn. Magn. Mater. 139 L231
Google Scholar
[9] Moodera J S, Kinder L R, Wong T M, Meservey R 1995 Phys. Rev. Lett. 74 3273
Google Scholar
[10] Parkin S S, Kaiser C, Panchula A, Rice P M, Hughes B, Samant M, Yang S H 2004 Nat. Mater. 3 862
Google Scholar
[11] Ikeda S, Hayakawa J, Ashizawa Y, Lee Y, Miura K, Hasegawa H, Tsunoda M, Matsukura F, Ohno H 2008 Appl. Phys. Lett. 93 082508
Google Scholar
[12] Cao Z, Chen W, Lu S, Yan S, Zhang Y, Zhou Z, Yang Y, Li Z, Zhao W, Leng Q 2021 Appl. Phys. Lett. 118 122402
Google Scholar
[13] Chen W, Yan S, Yang Y, Cao Z, Lin Y, Zhou Z, Yan S, Leng Q 2021 2021 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM) Chengdu China, 8–11 April 2021 pp1–3
[14] Tumanski S 2016 Handbook of Magnetic Measurements (CRC Press) pp159–256
[15] Su D, Wu K, Saha R, Peng C, Wang J P 2020 Micromachines 11 34
[16] Wang M, Wang Y, Peng L, Ye C 2019 IEEE Sens. J. 19 9610
Google Scholar
[17] Ichkitidze L, Bazaev N, Telyshev D, Preobrazhensky R, Gavrushina M 2015 Biomed. Eng. 48 305
Google Scholar
[18] Markevicius V, Navikas D, Zilys M, Andriukaitis D, Valinevicius A, Cepenas M 2016 Sensors 16 78
Google Scholar
[19] [20] Rosado L S, Cardoso F A, Cardoso S, Ramos P M, Freitas P P, Piedade M S 2014 Sens. Actuators, A 212 58
Google Scholar
[21] Sun X, Huang Q, Hou Y, Jiang L, Pong P W 2013 IEEE Trans. Power Delivery 28 2145
Google Scholar
[22] Jin Z, Mohd Noor Sam M A I, Oogane M, Ando Y 2021 Sensors 21 668
Google Scholar
[23] Wang C, Su W, Hu Z, Pu J, Guan M, Peng B, Li L, Ren W, Zhou Z, Jiang Z 2018 IEEE Trans. Magn. 54 1
Google Scholar
[24] Diao Z, Zheng Y, Kaiser C, Jiang X, Chen L, Roy A, Chien C, Wang M, Gider S, Mauri D 2015 2015 IEEE International Magnetics Conference (INTERMAG) Beijing China, 11–15 May 2015 p1
[25] Liu X, Ren C, Xiao G 2002 J. Appl. Phys. 92 4722
Google Scholar
[26] Chaves R, Cardoso S, Ferreira R, Freitas P 2011 J. Appl. Phys. 109 07E506
Google Scholar
[27] Silva A V, Leitao D C, Valadeiro J, Amaral J, Freitas P P, Cardoso S 2015 Eur. Phys. J. :Appl. Phys. 72 10601
Google Scholar
[28] Wiśniowski P, Almeida J, Cardoso S, Barradas N, Freitas P 2008 J. Appl. Phys. 103 07A910
Google Scholar
[29] Van Driel J, De Boer F, Lenssen K M, Coehoorn R 2000 J. Appl. Phys. 88 975
Google Scholar
[30] van Dijken S, Coey J 2005 Appl. Phys. Lett. 87 022504
Google Scholar
[31] Wei H, Qin Q, Wen Z, Han X, Zhang XG 2009 Appl. Phys. Lett. 94 172902
Google Scholar
[32] Nakano T, Oogane M, Furuichi T, Ando Y 2017 Appl. Phys. Lett. 110 012401
Google Scholar
[33] Yuan L, Liou SH, Wang D 2006 Phys. Rev. B 73 134403
Google Scholar
[34] Reig C, Cardoso S, Mukhopadhyay S C 2013 Smart Sensors, Measurement and Instrumentation (Springer) pp103–131
[35] Cao J, Freitas P 2010 J. Appl. Phys. 107 09E712
Google Scholar
[36] Berthold I, Müller M, Klötzer S, Ebert R, Thomas S, Matthes P, Albrecht M, Exner H 2014 Appl. Surf. Sci. 302 159
Google Scholar
[37] Franco F, Silva M, Cardoso S, Freitas P P 2021 Appl. Phys. Lett. 118 072401
Google Scholar
[38] Luong V, Jeng J, Lai B, Lu C 2015 2015 IEEE International Magnetics Conference (INTERMAG) Beijing China, 11–15 May 2015 p1
[39] Freitas P P, Ferreira R, Cardoso S 2016 Proc. IEEE 104 1894
Google Scholar
[40] Yan S, Cao Z, Guo Z, Zheng Z, Cao A, Qi Y, Leng Q, Zhao W 2018 Sensors 18 1832
Google Scholar
[41] Cao Z, Wei Y, Chen W, Yan S, Lin L, Li Z, Wang L, Yang H, Leng Q, Zhao W 2021 Sci. China: Inf. Sci. 64 1
[42] Luong V S, Jeng J T, Lai B L, Hsu J H, Chang C R, Lu C C 2015 IEEE Trans. Magn. 51 4004504
Google Scholar
[43] Lu C C, Huang J 2015 Sensors 15 14727
Google Scholar
[44] Cerro G, Ferrigno L, Laracca M, Milano F, Bellitti P, Serpelloni M, Piedrafita O C 2020 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Dubrovnik Croatia, 25–28 May 2020 pp1–6
[45] [46] Chiang C Y, Jeng J T, Lai B L, Luong V S, Lu C C 2015 J. Appl. Phys. 117 17A321
Google Scholar
[47] Su Y H, Lu C C, Jeng J T, Hsu J H, Liao M H, Wu J C, Lai M H, Chang C R 2017 IEEE Trans. Nanotechnol. 17 11
Google Scholar
[48] Yan S, Zhou Z, Cao Z, Yang Y, Li Z, Chen W, Leng Q, Zhao W 2021 2021 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM) Chengdu China, 8–11 April 2021 pp1–3
[49] Li R, Zhang S, Luo S, Guo Z, Xu Y, Ouyang J, Song M, Zou Q, Xi L, Yang X 2021 Nat. Electron. 4 179
Google Scholar
[50] TDK 2020 TDK Product Catalog [EB/OL]
[51] Lee Y, Hayakawa J, Ikeda S, Matsukura F, Ohno H 2007 Appl. Phys. Lett. 90 212507
Google Scholar
[52] Almeida J, Freitas P 2009 J. Appl. Phys. 105 07E722
Google Scholar
[53] Orgassa D, Fujiwara H, Schulthess T, Butler W 1999 Phys. Rev. B 60 13237
Google Scholar
[54] Tezuka N, Ikeda N, Mitsuhashi F, Sugimoto S 2009 Appl. Phys. Lett. 94 162504
Google Scholar
[55] Fujiwara K, Oogane M, Yokota S, Nishikawa T, Naganuma H, Ando Y 2012 J. Appl. Phys. 111 07C710
Google Scholar
[56] Lei Z, Li G, Egelhoff W F, Lai P, Pong P W 2011 IEEE Trans. Magn. 47 602
Google Scholar
[57] Nyquist H 1928 Phys. Rev. 32 110
Google Scholar
[58] Johnson J B 1928 Phys. Rev. 32 97
Google Scholar
[59] Ingvarsson S, Xiao G, Parkin S, Gallagher W, Grinstein G, Koch R 2000 Phys. Rev. Lett. 85 3289
Google Scholar
[60] Smith N, Arnett P 2001 Appl. Phys. Lett. 78 1448
Google Scholar
[61] Egelhoff Jr W, Pong P, Unguris J, McMichael R, Nowak E, Edelstein A, Burnette J, Fischer G 2009 Sens. Actuators, A 155 217
Google Scholar
[62] Freitas P, Ferreira R, Cardoso S, Cardoso F 2007 J. Phys.: Condens. Matter 19 165221
Google Scholar
[63] Nowak E, Weissman M, Parkin S 1999 Appl. Phys. Lett. 74 600
Google Scholar
[64] Almeida J, Wisniowski P, Freitas P 2008 IEEE Trans. Magn. 44 2569
Google Scholar
[65] Liou S H, Zhang R, Russek S E, Yuan L, Halloran S T, Pappas D P 2008 J. Appl. Phys. 103 07E920
Google Scholar
[66] Kandiah K, Whiting F 1978 Solid·State Electron. 21 1079
[67] Xi H, Loven J, Netzer R, Guzman J I, Franzen S, Mao S 2006 J. Phys. D: Appl. Phys. 39 2024
Google Scholar
[68] Polovy H, Guerrero R, Scola J, Pannetier-Lecoeur M, Fermon C, Feng G, Fahy K, Cardoso S, Almeida J, Freitas P 2010 J. Magn. Magn. Mater. 322 1624
Google Scholar
[69] Torrejon J, Solignac A, Chopin C, Moulin J, Doll A, Paul E, Fermon C, Pannetier-Lecoeur M 2020 Phys. Rev. Appl. 13 034031
Google Scholar
[70] Garzon S, Chen Y, Webb R A 2007 Physica E (Amsterdam, Neth. ) 40 133
[71] Fermon C, Pannetier-Lecoeur M 2013 Giant Magnetoresistance (GMR) Sensors (Springer) pp47–70
[72] Wisniowski P, Almeida J M, Freitas P P 2008 IEEE Trans. Magn. 44 2551
Google Scholar
[73] Deak J G, Zhou Z, Shen W 2017 AIP Adv. 7 056676
Google Scholar
[74] Moulin J, Doll A, Paul E, Pannetier-Lecoeur M, Fermon C, Sergeeva-Chollet N, Solignac A 2019 Appl. Phys. Lett. 115 122406
Google Scholar
[75] Huang L, Yuan Z, Tao B, Wan C, Guo P, Zhang Q, Yin L, Feng J, Nakano T, Naganuma H 2017 J. Appl. Phys. 122 113903
Google Scholar
[76] Cui Y, Khodadadi B, Schäfer S, Mewes T, Lu J, Wolf S A 2013 Appl. Phys. Lett. 102 162403
Google Scholar
[77] Valadeiro J P, Amaral J, Leitao D C, Ferreira R, Cardoso S F, Freitas P J 2015 IEEE Trans. Magn. 51 4400204
Google Scholar
[78] Tondra M, Daughton J M, Wang D, Beech R S, Fink A, Taylor J A 1998 J. Appl. Phys. 83 6688
Google Scholar
[79] Guerrero R, Pannetier-Lecoeur M, Fermon C, Cardoso S, Ferreira R, Freitas P 2009 J. Appl. Phys. 105 113922
Google Scholar
[80] Edelstein A S, Fischer G A 2002 J. Appl. Phys. 91 7795
Google Scholar
[81] Edelstein A, Fischer G, Pedersen M, Nowak E, Cheng S F, Nordman C 2006 J. Appl. Phys. 99 08B317
Google Scholar
[82] Guedes A, Jaramillo G, Buffa C, Vigevani G, Cardoso S, Leitao D, Freitas P, Horsley D 2012 IEEE Trans. Magn. 48 4115
Google Scholar
[83] Hu J, Pan M, Tian W, Chen D, Zhao J, Luo F 2012 Appl. Phys. Lett. 100 244102
Google Scholar
[84] Hu J, Pan M, Tian W, Chen D, Zhao J 2012 Rev. Sci. Instrum. 83 055009
Google Scholar
[85] Du Q, Hu J, Sun K, Chen D, Pan L, Che Y, Zhang X, Li P, Zhang B, Peng J 2019 IEEE Electron Device Lett. 40 1824
Google Scholar
[86] Hu J, Du Q, Pan M, Li P, Sun K, Wang W, Zhang J, Peng J, Qiu W, Chen D 2020 2020 IEEE Sensors Rotterdam Netherlands, October 25–28, 2020 pp1–4
[87] Zhang J, Pan M, Du Q, Hu J, Sun K, Yu Y, Zhang X, Luo H 2021 Micromachines 12 722
Google Scholar
[88] Liu Z, Chen J, Zou X 2021 Sensors 21 87
[89] Pan L, Pan M, Hu J, Hu Y, Che Y, Yu Y, Wang N, Qiu W, Li P, Peng J 2020 Sensors 20 1440
Google Scholar
[90] Che Y, Hu J, Pan L, Li P, Pan M, Chen D, Sun K, Zhang X, Du Q, Yu Y 2020 AIP Adv. 10 105032
Google Scholar
[91] Zheng C, Zhu K, De Freitas S C, Chang J Y, Davies J E, Eames P, Freitas P P, Kazakova O, Kim C, Leung C W 2019 IEEE Trans. Magn. 55 0800130
Google Scholar
[92] Song D, Nowak J, Larson R, Kolbo P, Chellew R 2000 IEEE Trans. Magn. 36 2545
Google Scholar
[93] Vopsaroiu M, Blackburn J, Cain M G 2007 J. Phys. D:Appl. Phys. 40 5027
Google Scholar
[94] Hayakawa J, Ikeda S, Lee Y M, Sasaki R, Meguro T, Matsukura F, Takahashi H, Ohno H 2005 Jpn. J. Appl. Phys. 44 L1267
Google Scholar
[95] Diao Z, Apalkov D, Pakala M, Ding Y, Panchula A, Huai Y 2005 Appl. Phys. Lett. 87 232502
Google Scholar
[96] Aurelio D, Torres L, Finocchio G 2009 J. Magn. Magn. Mater. 321 3913
Google Scholar
[97] Jeng J T, Lu C C, Hsu H Y 2017 Measurement 109 297
Google Scholar
[98] Deak J, Jin I 2019 IEEE Trans. Magn. 55 6700104
Google Scholar
[99] Hainz S, de la Torre E, Guettinger J 2021 AmE 2021-Automotive Meets Electronics; 12th GMM-Symposium online, March 10–11, 2021 pp1–4
[100] Rohrmann K, Sandner M, Meier P, Prochaska M 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Houston TX USA, May 14–17, 2018 pp1–6
[101] Guo D, Cardoso F, Ferreira R, Paz E, Cardoso S, Freitas P 2014 J. Appl. Phys. 115 17E513
Google Scholar
[102] Lawrence D, Donnal J S, Leeb S 2016 IEEE Sens. J. 16 6095
Google Scholar
[103] Simmons L P, Welsh J S 2013 5th International Conference on Computational Intelligence, Modelling and Simulation Seoul Korea (South), September 24–25, 2013 pp69–74
[104] Sedaghat S B, Ganji B A 2019 Microsyst. Technol. 25 217
Google Scholar
[105] Fuji Y, Hara M, Higashi Y, Kaji S, Masunishi K, Nagata T, Yuzawa A, Otsu K, Okamoto K, Baba S 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) Kaohsiung Taiwan, June 18–22, 2017 pp63–66
[106] Higashi Y, Fuji Y, Kaji S, Masunishi K, Nagata T, Yuzawa A, Otsu K, Okamoto K, Baba S, Ono T 2018 IEEE Micro Electro Mechanical Systems (MEMS) Belfast UK, January 21–25, 2018 pp1060–1063
[107] Fuji Y, Higashi Y, Kaji S, Masunishi K, Yuzawa A, Nagata T, Okamoto K, Baba S, Ono T, Hara M 2018 IEEE International Electron Devices Meeting (IEDM) San Francisco CA USA, December 1–5, 2018 pp4.2.1–4.2. 4
[108] Bermúdez G S C, Fuchs H, Bischoff L, Fassbender J r, Makarov D 2018 Nat. Electron. 1 589
Google Scholar
[109] Tanwear A, Liang X, Liu Y, Vuckovic A, Ghannam R, Böhnert T, Paz E, Freitas P P, Ferreira R, Heidari H 2020 IEEE Trans. Biomed. Circuits Syst. 14 1299
Google Scholar
[110] Fujiwara K, Oogane M, Kanno A, Imada M, Jono J, Terauchi T, Okuno T, Aritomi Y, Morikawa M, Tsuchida M 2018 Appl. Phys. Express 11 023001
Google Scholar
[111] Hajba L, Guttman A 2016 Biotechnol. Adv. 34 354
Google Scholar
[112] Liu W J, Ou S L, Chang Y H, Chen Y T, Liang Y C, Chang C Y, Chu C L, Wu T H 2021 Surf. Eng. 37 429
Google Scholar
[113] Kim K, Hall D A, Yao C, Lee J R, Ooi C C, Bechstein D J, Guo Y, Wang S X 2018 Sci. Rep. 8 1
计量
- 文章访问数: 17837
- PDF下载量: 862
- 被引次数: 0