-
本文通过实验研究了0.8 μm PD (Partially Depleted) SOI (Silicon-On-Insulator) p 型Metal-oxide-semiconductor-field-effect-Transistor(MOSFET) 经过剂量率为50 rad(Si)/s 的60Co γ射线辐照后的总剂量效应,分析了沟道长度对器件辐照效应的影响.研究结果表明:辐照总剂量相同时,短沟道器件的阈值电压负向漂移量比长沟道器件大,最大跨导退化的更加明显. 通过亚阈值分离技术分析得到,氧化物陷阱电荷是引起阈值电压漂移的主要因素. 与长沟道器件相比,短沟道器件辐照感生的界面陷阱电荷更多.This paper mainly investigates the total dose irradiation effects on 0.8 μm PD SOI PMOS devices which are exposed to 60Co γ-rays at a dose rate of 50 rad(Si)/s. The channel length dependence of SOI PMOS devices at total dose irradiation is investigated. The result shows that the threshold voltage shift is only a little larger for shorter channel devices at the same total dose. However, the degradation of maximum transconductance for shorter channel devices is more significant. We found that the oxide-trapped charge is the main factor impacting the threshold drift. We may conclude that a short channel device can produce more interface trapped charges by using the subthreshold separation technology.
-
Keywords:
- total dose radiation /
- threshold voltage shift /
- transconductance degradation /
- interface trapped charges
[1] Liu Z L, Hu Z Y, Zhang Z X,Shao H, Chen M, Bi D W, Ning B X, Zou S C 2011 Chin. Phys. B 20 070701
[2] Adell P C, Barnaby H J, Schrimpf R D, Vermeir B 2007 IEEE Trans. Nucl. Sci. 54 2174
[3] Shang H C, Liu H X, Zhuo Q Q 2012 Acta Phys. Sin. 61 246101 (in Chinese) [商怀超, 刘红侠, 卓青青 2012 61 246101]
[4] Zheng Z S, Liu Z L, Yu F, Li N 2012 Chin. Phys. B 21 116104
[5] Peng L, Zhuo Q Q, Liu H X, Cai H M 2012 Acta Phys. Sin. 61 240703(in Chinese) [彭里,卓青青,刘红侠,蔡惠民 2012 61 240703]
[6] Djezzar B, Smatti A, Amrouche A, Kechouane M 2000 IEEE Trans. Nucl. Sci. 47 1872
[7] Schrankler J W, Reich R K, Holt M S, Ju D H, Huang T J S, Kirchner G D 1985 IEEE Trans. Nucl. Sci. 32 3988
[8] Esqueda I S, Barnaby H J, McLatin M L, Adell P C, Mamouni F E, Dixit S K, Schrimpf R D, Xiong W 2009 IEEE Trans. Nucl. Sci. 56 2247
[9] Schwank J R, Shaneyfelt W R, Fleetwood D M, Felix J A, Dodd P E, Paillet P, Ferlet-Cavrios V 2008 IEEE Trans. Nucl. Sci. 55 1833
[10] Chen W, Balasinski A, Ma T P 1991 IEEE Trans. Nucl. Sci. 38 1126
[11] Balasinski A, Ma T P 1992 IEEE Trans. Nucl. Sci. 39 2000
[12] Chin M R, Ma T P 1983 Appl. Phys. Lett. 42 883
-
[1] Liu Z L, Hu Z Y, Zhang Z X,Shao H, Chen M, Bi D W, Ning B X, Zou S C 2011 Chin. Phys. B 20 070701
[2] Adell P C, Barnaby H J, Schrimpf R D, Vermeir B 2007 IEEE Trans. Nucl. Sci. 54 2174
[3] Shang H C, Liu H X, Zhuo Q Q 2012 Acta Phys. Sin. 61 246101 (in Chinese) [商怀超, 刘红侠, 卓青青 2012 61 246101]
[4] Zheng Z S, Liu Z L, Yu F, Li N 2012 Chin. Phys. B 21 116104
[5] Peng L, Zhuo Q Q, Liu H X, Cai H M 2012 Acta Phys. Sin. 61 240703(in Chinese) [彭里,卓青青,刘红侠,蔡惠民 2012 61 240703]
[6] Djezzar B, Smatti A, Amrouche A, Kechouane M 2000 IEEE Trans. Nucl. Sci. 47 1872
[7] Schrankler J W, Reich R K, Holt M S, Ju D H, Huang T J S, Kirchner G D 1985 IEEE Trans. Nucl. Sci. 32 3988
[8] Esqueda I S, Barnaby H J, McLatin M L, Adell P C, Mamouni F E, Dixit S K, Schrimpf R D, Xiong W 2009 IEEE Trans. Nucl. Sci. 56 2247
[9] Schwank J R, Shaneyfelt W R, Fleetwood D M, Felix J A, Dodd P E, Paillet P, Ferlet-Cavrios V 2008 IEEE Trans. Nucl. Sci. 55 1833
[10] Chen W, Balasinski A, Ma T P 1991 IEEE Trans. Nucl. Sci. 38 1126
[11] Balasinski A, Ma T P 1992 IEEE Trans. Nucl. Sci. 39 2000
[12] Chin M R, Ma T P 1983 Appl. Phys. Lett. 42 883
计量
- 文章访问数: 6710
- PDF下载量: 398
- 被引次数: 0