-
金属液体(或过冷液体)中的主要微观结构对最终的凝固路径(晶化或非晶化)起着决定性作用, 何种微观结构将扮演关键性角色一直处在不断的被探索和研究中. 本文采用分子动力学方法模拟研究金属钽(tantalum, Ta)液体在不同压强下的快速凝固过程, 通过原子平均能量、双体分布函数和最大标准团簇分析方法, 对凝固过程中的微观结构演变进行量化分析. 研究结果表明, 相比于低含量的二十面体, 拓扑密堆(topologically close-packed, TCP)团簇在金属Ta液体中扮演着关键角色, 它不仅含量更高, 而且更能对凝固路径起决定性作用. 当压强P∈[0, 8.75] GPa时, 金属Ta液体中的TCP团簇不仅处于能量低且稳定性好的状态, 同时TCP团簇相互连结程度高而不容易被分解, 从而促进金属Ta液体发生非晶转变;当压强P∈[9.375, 50] GPa, 金属Ta液体中TCP团簇处于亚稳定状态, 且很多高能量的TCP团簇在液固转变过程中容易转变成其它团簇, 此时体心立方(bodycentered cubic, BCC)晶胚容易在TCP团簇堆积稀疏区域形核和长大, 最终金属Ta液体转变成比较完美的BCC晶体.The primary microstructures in metallic liquids (or supercooled liquids) play a decisive role in determining the final solidification pathway (crystallization or amorphization). However, the question of which specific microstructures play a critical role has attracted widespread attention from scholars. Some previous theoretical and experimental studies have suggested that icosahedron (ICO) clusters (or ICO short-range order) in metallic liquids possess lower energy than crystals, and a high abundance of ICO clusters can increase the nucleation barrier, promoting amorphous transformation. Current research results indicate that the content of various clusters (especially ICO clusters) is low in many metallic liquids. Therefore, it is significant to identify which microstructure plays a critical role in metallic liquids.
In this work, the rapid solidification processes of tantalum (Ta) metallic liquid under various pressure conditions were investigated using molecular dynamic (MD) simulation, the microstructure evolution during different solidification processes is quantitatively analyzed through the average atomic energy, pair distribution function, and largest standard cluster analysis (LaSCA). The results show that, compared to the low content of ICO, topologically close-packed (TCP) clusters are not only more abundant but also play a more decisive role in determining the solidification path of Ta metallic liquids. Under pressure P∈[0, 8.75] GPa, the TCP clusters in Ta metallic liquid exhibit low energy, and a highly stable state as well as highly interconnected and resistant to decomposition, thereby promoting the amorphous transformation of the Ta metallic liquid. Under pressure P∈[9.375, 50] GPa, the TCP clusters in Ta metallic liquid are in a metastable state, many TCP clusters with high energy state can easily transform into other clusters during the liquid-solid transition process. At this stage, nucleation and growth of the body-centered cubic (BCC) embryo primarily occur in areas where TCP clusters are stacked sparsely, eventually forming a perfect BCC crystal from Ta metallic liquid.-
Keywords:
- Ta Metallic Liquid /
- Molecular Dynamics /
- Rapid Solidification /
- Microstructure
-
[1] Wang H P, Liao H, Hu L, Zheng C H, Chang J, Liu D N, Li M X, Zhao J F, Xie W J, Wei B B 2024 Acta. Mater. 36 2313162
[2] Wang Q, Zhai B, Wang H P, Wei B 2021 J. Appl. Phys 130 185103
[3] Wang H P, Li M X, Zou P F, Cai X, Hu L, Wei B B 2018 Phys. Rev. B. 98 063106
[4] Zou P F, Wang H P, Yang S J, Hu L, Wei B B 2018 Metall. Mater. Trans. A 49 5488
[5] Chen C J, Zhang C, Wang X N, Zhang M, Jing H M 2014 Hot Working Technology 43 5 [陈长军, 张超, 王晓南, 张敏, 敬和民 2014 热加工工艺 43 5]
[6] He J L, Zhang X Q, Yang Q G, Zheng A G 2014 Materials China 33 545 [何季麟, 张学清, 杨国启, 郑爱国 2014 中国材料进展 33: 545]
[7] Zhang J Y, Gong C, Feng D Y, Huang H, Li Y, Li B T 2024 Shandong Chemical Industry 53 94 [张嘉祺, 巩琛, 冯典英, 黄辉, 李颖, 李本涛 2024山东化工53 94]
[8] Gladczuk L, Patel A, Demaree J D, Sosnowski M 2005 Thin Solid Films 476 295
[9] Marcus R B, Quigley S 1968 Thin Solid Films 2 467
[10] Read M H, Altman C 1965 Appl. Phys. Lett 7 51
[11] Janish M T, Kotula P G, Boyce B L, Carter C B 2015 J Mater Sci 50 3706
[12] Moriarty J A, Belak J F, Rudd R E, Soderlind P, Streitz F H, Yang L H 2002 J. Phys.: Condens. Mater 14 2825
[13] Moriarty J A 1990 Phys. Rev. B. 42 1609
[14] Moriarty J A 1994 Phys. Rev. B. 49 12431
[15] Moriarty J A, Benedict L X, Glosli J N, Hood R Q, Orlikowski D A, Patel M V, Soderlind P, Streitz F H, Tang M J, Yang L H 2006 J. Mater. Res 21 563
[16] Zhong L, Wang J, Sheng H, Zhang Z, Mao S X 2014 Nature 512
[17] Frank F C 1952 Proc. R. Soc. Lond. A 215 43
[18] Kelton K, Gangopadhyay A K, Kim T H, Lee G W 2006 J. Non-Cryst. Solid 352 5318
[19] Schenk T, Holland-Moritz D, Simonet V, Bellissent R, Herlach D 2002 Phys. Rev. Lett 89 075507
[20] Zhang J C, Chen C, Pei Q X, Zhang W X, Sha Z D 2015 Mater. Des 77 1
[21] Chen L Y, Mohr M, Wunderlich R K, Fecht H J, Wang X D, Cao Q P, Zhang D X, Jiang J Z 2019 J. Mol. Liq. 293 111544
[22] Sheng H W, Ma E, Kramer M J 2012 JOM 64 856
[23] Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419
[24] Peng C, Li Y, Deng Y H, Peng P 2017 Acta Metall. Sin. 53 1659 [彭超, 李媛, 邓永和, 彭平 2017金属学报53 1659]
[25] Angell C A 1995 Science 267 1924
[26] Berthier L, Biroli G 2011 Rev. Mod. Phys 83 587
[27] Liu Z L, Cai L C, Chen X R, Jing F Q 2008 Phys. Rev. B. 77 024103
[28] Liu Z L, Zhang X L, Cai L C, Chen X R, Wu Q, Jing F Q 2008 J. Phys. Chem. Solids 69 2833
[29] Katagiri K, Ozaki N, Ohmura S, Albertazzi B, Hironaka Y, Inubushi Y, Ishida K, Koenig M, Miyanishi K, Nakamura H, Nishikino M, Okuchi T, Sato T 2021 Phys. Rev. Lett. 126 175503
[30] Wu Z Z, Mo Y F, Lang L, Yu A B, Xie Q, Liu R S, Tian Z A 2018 Phys. Chem. Chem. Phys 20 28088
[31] Tian Z A, Zhang Z Y, Jiang X, Wei F, Ping S, Wu F 2023 metals 13 415
[32] Mo Y F, Tian Z A, Zhou L L, Liang Y C, Dong K J, Zhang X F, Zhang H T, Peng P, Liu R S 2024 Chem. Phys. 581 112238
[33] Mōller J, Schottelius A, Caresana M, Boesenberg U, Kim C, Dallari F, Ezquerra T A, Fernández J M, Gelisio L, Glaesener A, Goy C, Hallmann J, Kalinin A, Kurta R P 2024 Phys. Rev. Lett. 132 206102
[34] Plimpton S 1995 J. Comput. Phys. 117 1
[35] Martyna G J, Tobias D J, Klein M L 1994 J. Chem. Phys. 101 4177
[36] https://sites.google.com/site/eampotentials/ta.
[37] Mo Y F, Tian Z A, Lang L, Zhou L L, Liang Y C, Zhang H T, Liu R S, Peng P, Wen D D 2020 Phy. Chem. Chem. Phys. 22 18078
[38] We D D, Deng Y H, Dai X Y, Wu A R, Tian Z A, Peng P 2020 Acta Phys. Sin. 69 196101 [文大冬, 祁青华, 黄欣欣, 易洲, 邓永和, 田泽安, 彭平2020 69 196101]
[39] Kbirou M, Atila A, Hasnaoui A 2024 Phys. Scr. 99 085946
[40] Khmich A, Sbiaai K, Hasnaoui A 2019 J. Non-Cryst. Solids 510 81
[41] Fan X, Pan D, Li M 2019 J. Phys.: Condens. Matte 31 095402
[42] Guder V, Celtek M, Celik F A, Sengul S 2023 J. Non-Cryst. Solid 602 122067
[43] Chen Y X, Feng S D, Lu X Q, Kang H, Ngai K L, Wang L M 2022 J. Mol. Liq. 368 120706
[44] Nosé S 1984 J. Chem. Phys 81 511
[45] Parrinello M, Rahman A 1981 J. Appl. Phys 52 7182
[46] Wang B, Shang B S, Gao X Q, Sun Y T, Qiao J C, Wang W H, Pan M X, Guan P F 2022 J. Non-Cryst. Solid 576 121247
[47] Jafary-Zadeh M, Aitken Z H, Tavakoli R, Zhang Y W 2018 J. Alloys Compd 748 679
计量
- 文章访问数: 62
- PDF下载量: 1
- 被引次数: 0