搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压下金属钽液体中拓扑密堆团簇对凝固路径的影响规律

莫云飞 蒋丽贵 稂林 文大东 张海涛 李媛 田泽安 彭平 刘让苏

引用本文:
Citation:

高压下金属钽液体中拓扑密堆团簇对凝固路径的影响规律

莫云飞, 蒋丽贵, 稂林, 文大东, 张海涛, 李媛, 田泽安, 彭平, 刘让苏

The Influence of Topologically Close-Packed Clusters on the Solidification Pathway of Metallic Tantalum Liquid Under High Pressure

Mo Yunfei, Jiang Ligui, Lang Lin, Wen Dadong, Zhang Haitao, Li Yuan, Tian Zean, Peng Ping, Liu Rangsu
PDF
导出引用
  • 金属液体(或过冷液体)中的主要微观结构对最终的凝固路径(晶化或非晶化)起着决定性作用, 何种微观结构将扮演关键性角色一直处在不断的被探索和研究中. 本文采用分子动力学方法模拟研究金属钽(tantalum, Ta)液体在不同压强下的快速凝固过程, 通过原子平均能量、双体分布函数和最大标准团簇分析方法, 对凝固过程中的微观结构演变进行量化分析. 研究结果表明, 相比于低含量的二十面体, 拓扑密堆(topologically close-packed, TCP)团簇在金属Ta液体中扮演着关键角色, 它不仅含量更高, 而且更能对凝固路径起决定性作用. 当压强P∈[0, 8.75] GPa时, 金属Ta液体中的TCP团簇不仅处于能量低且稳定性好的状态, 同时TCP团簇相互连结程度高而不容易被分解, 从而促进金属Ta液体发生非晶转变;当压强P∈[9.375, 50] GPa, 金属Ta液体中TCP团簇处于亚稳定状态, 且很多高能量的TCP团簇在液­固转变过程中容易转变成其它团簇, 此时体心立方(body­centered cubic, BCC)晶胚容易在TCP团簇堆积稀疏区域形核和长大, 最终金属Ta液体转变成比较完美的BCC晶体.
    The primary microstructures in metallic liquids (or supercooled liquids) play a decisive role in determining the final solidification pathway (crystallization or amorphization). However, the question of which specific microstructures play a critical role has attracted widespread attention from scholars. Some previous theoretical and experimental studies have suggested that icosahedron (ICO) clusters (or ICO short-range order) in metallic liquids possess lower energy than crystals, and a high abundance of ICO clusters can increase the nucleation barrier, promoting amorphous transformation. Current research results indicate that the content of various clusters (especially ICO clusters) is low in many metallic liquids. Therefore, it is significant to identify which microstructure plays a critical role in metallic liquids.
    In this work, the rapid solidification processes of tantalum (Ta) metallic liquid under various pressure conditions were investigated using molecular dynamic (MD) simulation, the microstructure evolution during different solidification processes is quantitatively analyzed through the average atomic energy, pair distribution function, and largest standard cluster analysis (LaSCA). The results show that, compared to the low content of ICO, topologically close-packed (TCP) clusters are not only more abundant but also play a more decisive role in determining the solidification path of Ta metallic liquids. Under pressure P∈[0, 8.75] GPa, the TCP clusters in Ta metallic liquid exhibit low energy, and a highly stable state as well as highly interconnected and resistant to decomposition, thereby promoting the amorphous transformation of the Ta metallic liquid. Under pressure P∈[9.375, 50] GPa, the TCP clusters in Ta metallic liquid are in a metastable state, many TCP clusters with high energy state can easily transform into other clusters during the liquid-solid transition process. At this stage, nucleation and growth of the body-centered cubic (BCC) embryo primarily occur in areas where TCP clusters are stacked sparsely, eventually forming a perfect BCC crystal from Ta metallic liquid.
  • [1]

    Wang H P, Liao H, Hu L, Zheng C H, Chang J, Liu D N, Li M X, Zhao J F, Xie W J, Wei B B 2024 Acta. Mater. 36 2313162

    [2]

    Wang Q, Zhai B, Wang H P, Wei B 2021 J. Appl. Phys 130 185103

    [3]

    Wang H P, Li M X, Zou P F, Cai X, Hu L, Wei B B 2018 Phys. Rev. B. 98 063106

    [4]

    Zou P F, Wang H P, Yang S J, Hu L, Wei B B 2018 Metall. Mater. Trans. A 49 5488

    [5]

    Chen C J, Zhang C, Wang X N, Zhang M, Jing H M 2014 Hot Working Technology 43 5 [陈长军, 张超, 王晓南, 张敏, 敬和民 2014 热加工工艺 43 5]

    [6]

    He J L, Zhang X Q, Yang Q G, Zheng A G 2014 Materials China 33 545 [何季麟, 张学清, 杨国启, 郑爱国 2014 中国材料进展 33: 545]

    [7]

    Zhang J Y, Gong C, Feng D Y, Huang H, Li Y, Li B T 2024 Shandong Chemical Industry 53 94 [张嘉祺, 巩琛, 冯典英, 黄辉, 李颖, 李本涛 2024山东化工53 94]

    [8]

    Gladczuk L, Patel A, Demaree J D, Sosnowski M 2005 Thin Solid Films 476 295

    [9]

    Marcus R B, Quigley S 1968 Thin Solid Films 2 467

    [10]

    Read M H, Altman C 1965 Appl. Phys. Lett 7 51

    [11]

    Janish M T, Kotula P G, Boyce B L, Carter C B 2015 J Mater Sci 50 3706

    [12]

    Moriarty J A, Belak J F, Rudd R E, Soderlind P, Streitz F H, Yang L H 2002 J. Phys.: Condens. Mater 14 2825

    [13]

    Moriarty J A 1990 Phys. Rev. B. 42 1609

    [14]

    Moriarty J A 1994 Phys. Rev. B. 49 12431

    [15]

    Moriarty J A, Benedict L X, Glosli J N, Hood R Q, Orlikowski D A, Patel M V, Soderlind P, Streitz F H, Tang M J, Yang L H 2006 J. Mater. Res 21 563

    [16]

    Zhong L, Wang J, Sheng H, Zhang Z, Mao S X 2014 Nature 512

    [17]

    Frank F C 1952 Proc. R. Soc. Lond. A 215 43

    [18]

    Kelton K, Gangopadhyay A K, Kim T H, Lee G W 2006 J. Non-Cryst. Solid 352 5318

    [19]

    Schenk T, Holland-Moritz D, Simonet V, Bellissent R, Herlach D 2002 Phys. Rev. Lett 89 075507

    [20]

    Zhang J C, Chen C, Pei Q X, Zhang W X, Sha Z D 2015 Mater. Des 77 1

    [21]

    Chen L Y, Mohr M, Wunderlich R K, Fecht H J, Wang X D, Cao Q P, Zhang D X, Jiang J Z 2019 J. Mol. Liq. 293 111544

    [22]

    Sheng H W, Ma E, Kramer M J 2012 JOM 64 856

    [23]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419

    [24]

    Peng C, Li Y, Deng Y H, Peng P 2017 Acta Metall. Sin. 53 1659 [彭超, 李媛, 邓永和, 彭平 2017金属学报53 1659]

    [25]

    Angell C A 1995 Science 267 1924

    [26]

    Berthier L, Biroli G 2011 Rev. Mod. Phys 83 587

    [27]

    Liu Z L, Cai L C, Chen X R, Jing F Q 2008 Phys. Rev. B. 77 024103

    [28]

    Liu Z L, Zhang X L, Cai L C, Chen X R, Wu Q, Jing F Q 2008 J. Phys. Chem. Solids 69 2833

    [29]

    Katagiri K, Ozaki N, Ohmura S, Albertazzi B, Hironaka Y, Inubushi Y, Ishida K, Koenig M, Miyanishi K, Nakamura H, Nishikino M, Okuchi T, Sato T 2021 Phys. Rev. Lett. 126 175503

    [30]

    Wu Z Z, Mo Y F, Lang L, Yu A B, Xie Q, Liu R S, Tian Z A 2018 Phys. Chem. Chem. Phys 20 28088

    [31]

    Tian Z A, Zhang Z Y, Jiang X, Wei F, Ping S, Wu F 2023 metals 13 415

    [32]

    Mo Y F, Tian Z A, Zhou L L, Liang Y C, Dong K J, Zhang X F, Zhang H T, Peng P, Liu R S 2024 Chem. Phys. 581 112238

    [33]

    Mōller J, Schottelius A, Caresana M, Boesenberg U, Kim C, Dallari F, Ezquerra T A, Fernández J M, Gelisio L, Glaesener A, Goy C, Hallmann J, Kalinin A, Kurta R P 2024 Phys. Rev. Lett. 132 206102

    [34]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [35]

    Martyna G J, Tobias D J, Klein M L 1994 J. Chem. Phys. 101 4177

    [36]

    https://sites.google.com/site/eampotentials/ta.

    [37]

    Mo Y F, Tian Z A, Lang L, Zhou L L, Liang Y C, Zhang H T, Liu R S, Peng P, Wen D D 2020 Phy. Chem. Chem. Phys. 22 18078

    [38]

    We D D, Deng Y H, Dai X Y, Wu A R, Tian Z A, Peng P 2020 Acta Phys. Sin. 69 196101 [文大冬, 祁青华, 黄欣欣, 易洲, 邓永和, 田泽安, 彭平2020 69 196101]

    [39]

    Kbirou M, Atila A, Hasnaoui A 2024 Phys. Scr. 99 085946

    [40]

    Khmich A, Sbiaai K, Hasnaoui A 2019 J. Non-Cryst. Solids 510 81

    [41]

    Fan X, Pan D, Li M 2019 J. Phys.: Condens. Matte 31 095402

    [42]

    Guder V, Celtek M, Celik F A, Sengul S 2023 J. Non-Cryst. Solid 602 122067

    [43]

    Chen Y X, Feng S D, Lu X Q, Kang H, Ngai K L, Wang L M 2022 J. Mol. Liq. 368 120706

    [44]

    Nosé S 1984 J. Chem. Phys 81 511

    [45]

    Parrinello M, Rahman A 1981 J. Appl. Phys 52 7182

    [46]

    Wang B, Shang B S, Gao X Q, Sun Y T, Qiao J C, Wang W H, Pan M X, Guan P F 2022 J. Non-Cryst. Solid 576 121247

    [47]

    Jafary-Zadeh M, Aitken Z H, Tavakoli R, Zhang Y W 2018 J. Alloys Compd 748 679

  • [1] 吴博强, 刘海蓉, 刘让苏, 莫云飞, 田泽安, 梁永超, 关绍康, 黄昌雄. 冷速对液态金属Mg凝固过程中微观结构演变的影响.  , doi: 10.7498/aps.66.016101
    [2] 李丽丽, 张晓虹, 王玉龙, 国家辉, 张双. 基于聚乙烯/蒙脱土纳米复合材料微观结构的力学性能模拟.  , doi: 10.7498/aps.65.196202
    [3] 邓永和, 文大东, 彭超, 韦彦丁, 赵瑞, 彭平. 二十面体团簇的遗传:一个与快凝Cu56Zr44合金玻璃形成能力有关的动力学参数.  , doi: 10.7498/aps.65.066401
    [4] 文大东, 彭平, 蒋元祺, 田泽安, 刘让苏. 快凝过程中液态Cu64Zr36合金二十面体团簇遗传与演化跟踪.  , doi: 10.7498/aps.62.196101
    [5] 蔡杰, 季乐, 杨盛志, 张在强, 刘世超, 李艳, 王晓彤, 关庆丰. 强流脉冲电子束作用下金属锆的微观结构与应力状态.  , doi: 10.7498/aps.62.156106
    [6] 邓阳, 刘让苏, 周群益, 刘海蓉, 梁永超, 莫云飞, 张海涛, 田泽安, 彭平. 熔体初始温度对液态金属Ni凝固过程中微观结构演变影响的模拟研究.  , doi: 10.7498/aps.62.166101
    [7] 徐春龙, 侯兆阳, 刘让苏. Ca70Mg30金属玻璃形成过程热力学、 动力学和结构特性转变机理的模拟研究.  , doi: 10.7498/aps.61.136401
    [8] 罗庆洪, 陆永浩, 娄艳芝. Ti-B-C-N纳米复合薄膜结构及力学性能研究.  , doi: 10.7498/aps.60.086802
    [9] 罗庆洪, 娄艳芝, 赵振业, 杨会生. 退火对AlTiN多层薄膜结构及力学性能影响.  , doi: 10.7498/aps.60.066201
    [10] 田雪雁, 赵谡玲, 徐征, 姚江峰, 张福俊, 贾全杰, 陈雨, 樊星, 龚伟. 高分子有机场效应晶体管中半导体薄膜结晶行为及微观结构变化的研究.  , doi: 10.7498/aps.60.027201
    [11] 侯兆阳, 刘丽霞, 刘让苏, 田泽安. Al-Mg合金熔体快速凝固过程中微观结构演化机理的模拟研究.  , doi: 10.7498/aps.58.4817
    [12] 徐锦锋, 代富平, 魏炳波. 急冷条件下Cu-Pb偏晶合金的相分离研究.  , doi: 10.7498/aps.56.3996
    [13] 周国荣, 高秋明. 金属Ni纳米线凝固行为的分子动力学模拟.  , doi: 10.7498/aps.56.1499
    [14] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能.  , doi: 10.7498/aps.56.6118
    [15] 侯兆阳, 刘让苏, 王 鑫, 田泽安, 周群益, 陈振华. 熔体初始温度对液态金属Na凝固过程中微观结构影响的模拟研究.  , doi: 10.7498/aps.56.376
    [16] 朱才镇, 张培新, 许启明, 刘剑洪, 任祥忠, 张黔玲, 洪伟良, 李琳琳. 分子动力学模拟不同组分下CaO-Al2O3-SiO2系玻璃微观结构的转变.  , doi: 10.7498/aps.55.4795
    [17] 刘让苏, 覃树萍, 侯兆阳, 陈晓莹, 刘凤翔. 液态金属In凝固过程中微观结构转变的模拟研究.  , doi: 10.7498/aps.53.3119
    [18] 吴恒安, 倪向贵, 王宇, 王秀喜. 金属纳米棒弯曲力学行为的分子动力学模拟.  , doi: 10.7498/aps.51.1412
    [19] 梁海弋, 王秀喜, 吴恒安, 王宇. 纳米多晶铜微观结构的分子动力学模拟.  , doi: 10.7498/aps.51.2308
    [20] 陶向明, 曾耀武, 冯春木, 焦正宽, 叶高翔. 沉积在液体衬底上连续铝薄膜的微观结构.  , doi: 10.7498/aps.49.2235
计量
  • 文章访问数:  62
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2024-09-27

/

返回文章
返回
Baidu
map