-
近年来,掺Er3+的CdF2-CdCl2-NaF-BaF2-BaCl2-ZnF2玻璃已成为固体材料激光冷却领域中新的研究材料之一. 本文利用激光器输出理论和驻波腔内共振增强原理分析了该材料的两种腔内增强激光的冷却,计算结果表明腔增强可获得几十到几百倍的增强因子. 此外,比较了内腔和外腔这两种增强方案,研究结果表明,当材料的吸收比较小时,特别是材料长度小于0.3 mm时,采用内腔增强方案,腔内抽运功率高,冷却材料对激光的吸收大. 然而当材料的吸收比较大时,特别是材料长度大于3 mm时,外腔增强方案更具优越性. 最后,根据Er3+掺杂材料制冷工作波长和功率的要求,指出腔增强实验可通过半导体激光器来实现.In recent years, Er3+ doped CdF2-CdCl2-NaF-BaF2-BaCl2-ZnF2 (CNBZN) glass has become one of the new materials in the field of laser cooling of solids. In this paper, using the theory of laser output and standing wave resonance, intracavity-and extracavity-enhanced laser cooling of Er3+-doped CNBZN glass are theoretically analyzed. Calculated results show that enhancement factor can achieve tens to hundreds of times. Moreover, two schemes are compared with each other, and the results show that for low material absorption, especially when the sample length is less than 0.3 mm, intracavity configuration has the advantage of high pumping power and high absorption. However, for high material absorption, especially when the sample length is longer than 3 mm, the extracavity configuration becomes a more efficient means for laser cooling. Finally, according to the operating wavelength and power requirements of Er3+-doped material, cavity enhancement can be realized experimentally using semiconductor diode laser.
-
Keywords:
- laser cooling /
- rare-earth ions /
- cavity enhancement
[1] Pringsheim P 1929 Z. Phys. 57 739
[2] Epstein R I, Buchwald M I, Edwards B C 1995 Nature 377 500
[3] Mungan C E, Buchwald M I, Edwards B C, Epstein R I, Gosnell T R 1997 Phys. Rev. Lett. 78 1030
[4] Hoyt C W, Sheik-Bahae M, Epstein R I, Edwards B C, Anderson J E 2000 Phys. Rev. Lett. 85 3600
[5] Hoyt C W, Hasselbeck M P, Sheik-Bahae M, Epstein R I 2003 J. Opt. Soc. Am. B 20 1066
[6] Fernandez J, Mendioroz A, Garcia A J, Balda R, Adam J L, Arriandiaga M A 2001 Opt. Mater. 16 173
[7] Fernandez J, Mendioroz A, Garcia A J, Balda R, Adam J L 2001 J. Alloys Compounds 323-324 239
[8] Rayner A, Friese M E J, Truscott A G, Heckenberg N R, Rubinsztein-Dunlop H 2001 J. Mod. Opt. 48 103
[9] Rayner A, Hirsch M, Heckenberg N R, Rubinsztein-Dunlop H 2001 Appl. Opt. 40 5423
[10] Rayner A, Heckenberg N R, Dunlop H R 2003 J. Opt. Soc. Am. B 20 1037
[11] Gosnell T R 1999 Opt. Lett. 24 1041
[12] Lamouche G, Lavallard P, Suris R, Grousson R 1998 J. Appl. Phys. 84 509
[13] Xiao S G, Yang X L, Ding J W 2009 Acta Phys. Sin. 58 3812 (in Chinese)[肖思国, 阳效良, 丁建文2009 58 3812]
[14] Wang Y L, Wang X L, Liang W H, Guo J X, Ding X C, Chu L Z, Deng Z C, Fu G S 2011 Acta Phys. Sin. 60 127302 (in Chinese)[王英龙, 王秀丽, 梁伟华, 郭建新, 丁学成, 褚立志, 邓泽超, 傅广生2011 60 127302]
[15] Fernandez J, Garcia-Adeva J A, Balda R 2012 Optical Materials 34 579
[16] Kim J, Kaviany M 2009 Appl. Phys Lett. 95 074103
[17] Fernandez J, Garcia A J, Balda. R 2006 Phys. Rev. Lett. 97 033001
[18] Heeg B, Rumbles G, Khizhnyak. A, Debarber P A 2002 J. Appl. Phys. 91 3356
[19] Wu J, Wang C L, Lin J T 2003 Chin. Phys. 12 1120
[20] Lozano B W, Araujo C B, Acioli L H, Messaddeq Y 1998 J. Appl. Phys. 84 2263
[21] Youhua J, Biao Z, Jianping Y 2008 Chin. Phys. Lett. 25 85
[22] Cao W Y, He Y F, Chen Z, Yang W, Du W M, Hu X D 2013 Chin. Phys. B 22 076803
[23] Feng M X, Zhang S M, Jiang D S, Liu J P, Wang H, Zeng C, Li Z C, Wang H B, Wang F, Yang H 2012 Chin. Phys. B 21 084209
[24] Garcia-Adeva A J, Balda R, Fernandez J 2007 Proc. of SPIE 6461 646102
[25] Yen S T, Lee K C 2010 J. Appl. Phys. 107 054513
[26] Kolar M, Klimovsky D G, Alicki R, Kurizki G 2012 Phys. Rev. Lett. 109 090601
[27] Nemova G, Kasgyap R 2011 Phys. Rev. A 83 013404
-
[1] Pringsheim P 1929 Z. Phys. 57 739
[2] Epstein R I, Buchwald M I, Edwards B C 1995 Nature 377 500
[3] Mungan C E, Buchwald M I, Edwards B C, Epstein R I, Gosnell T R 1997 Phys. Rev. Lett. 78 1030
[4] Hoyt C W, Sheik-Bahae M, Epstein R I, Edwards B C, Anderson J E 2000 Phys. Rev. Lett. 85 3600
[5] Hoyt C W, Hasselbeck M P, Sheik-Bahae M, Epstein R I 2003 J. Opt. Soc. Am. B 20 1066
[6] Fernandez J, Mendioroz A, Garcia A J, Balda R, Adam J L, Arriandiaga M A 2001 Opt. Mater. 16 173
[7] Fernandez J, Mendioroz A, Garcia A J, Balda R, Adam J L 2001 J. Alloys Compounds 323-324 239
[8] Rayner A, Friese M E J, Truscott A G, Heckenberg N R, Rubinsztein-Dunlop H 2001 J. Mod. Opt. 48 103
[9] Rayner A, Hirsch M, Heckenberg N R, Rubinsztein-Dunlop H 2001 Appl. Opt. 40 5423
[10] Rayner A, Heckenberg N R, Dunlop H R 2003 J. Opt. Soc. Am. B 20 1037
[11] Gosnell T R 1999 Opt. Lett. 24 1041
[12] Lamouche G, Lavallard P, Suris R, Grousson R 1998 J. Appl. Phys. 84 509
[13] Xiao S G, Yang X L, Ding J W 2009 Acta Phys. Sin. 58 3812 (in Chinese)[肖思国, 阳效良, 丁建文2009 58 3812]
[14] Wang Y L, Wang X L, Liang W H, Guo J X, Ding X C, Chu L Z, Deng Z C, Fu G S 2011 Acta Phys. Sin. 60 127302 (in Chinese)[王英龙, 王秀丽, 梁伟华, 郭建新, 丁学成, 褚立志, 邓泽超, 傅广生2011 60 127302]
[15] Fernandez J, Garcia-Adeva J A, Balda R 2012 Optical Materials 34 579
[16] Kim J, Kaviany M 2009 Appl. Phys Lett. 95 074103
[17] Fernandez J, Garcia A J, Balda. R 2006 Phys. Rev. Lett. 97 033001
[18] Heeg B, Rumbles G, Khizhnyak. A, Debarber P A 2002 J. Appl. Phys. 91 3356
[19] Wu J, Wang C L, Lin J T 2003 Chin. Phys. 12 1120
[20] Lozano B W, Araujo C B, Acioli L H, Messaddeq Y 1998 J. Appl. Phys. 84 2263
[21] Youhua J, Biao Z, Jianping Y 2008 Chin. Phys. Lett. 25 85
[22] Cao W Y, He Y F, Chen Z, Yang W, Du W M, Hu X D 2013 Chin. Phys. B 22 076803
[23] Feng M X, Zhang S M, Jiang D S, Liu J P, Wang H, Zeng C, Li Z C, Wang H B, Wang F, Yang H 2012 Chin. Phys. B 21 084209
[24] Garcia-Adeva A J, Balda R, Fernandez J 2007 Proc. of SPIE 6461 646102
[25] Yen S T, Lee K C 2010 J. Appl. Phys. 107 054513
[26] Kolar M, Klimovsky D G, Alicki R, Kurizki G 2012 Phys. Rev. Lett. 109 090601
[27] Nemova G, Kasgyap R 2011 Phys. Rev. A 83 013404
计量
- 文章访问数: 5754
- PDF下载量: 509
- 被引次数: 0