搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种广义三模腔光机械系统的相干完美吸收与透射

张永棠

引用本文:
Citation:

一种广义三模腔光机械系统的相干完美吸收与透射

张永棠

Coherent perfect absorption and transmission of a generalized three-mode cavity optico-mechanical system

Zhang Yong-Tang
PDF
导出引用
  • 提出了一种广义的三模式腔光机械系统,系统的中间是一个反射率为100%的可移动的全反射机械振子,两侧均由一个部分透射的固定光学腔镜构成.其中两个光学腔由一束较强的控制场和一束较弱的信号场驱动与同一个机械振子实现耦合.较弱的信号场将会被该系统完全吸收而不产生任何能量输出,并且当相干完美吸收产生时,输入信号场的能量将由两个腔场和机械模共同分担;较弱的输入信号场由一个腔完美透视到另一个腔而不产生任何的能量损耗.分析与数值结果显示,在不同参数机制下,在该三模光机械系统中可以实现相干完美吸收、相干完美透射和相干完美合成的量子现象.此外,改变腔与腔之间的耦合度,可以实现输出探测场在相干完美吸收和相干完美透射之间转换;通过简单的相位调制,可以实现探测场左腔-右腔的输出和输入方向的互换.这些动态控制在量子信息网络可用来构造光子开关、光子路由、光子交换机等一些特殊功能的光子学器件.
    With the rapid development of nano-physics and quantum optics, optico-mechanical coupling system is developing toward the miniaturization and lightweight. The physical characteristics of optical cavity and applications of optic-mechanical devices have received much attention. In this paper, a generalized three-mode cavity optico-mechanical system is presented, the steady-state responses of the system to the characteristics of weak detection of light absorption and dispersion in several different coherent driving modes are studied. Situated in the middle of system is a portable total reflection mechanical oscillator with a reflectance of 100%, and located on each side is a fixed optical cavity mirror with partial transmittance, Three-mode cavity optical mechanical system consists of fixed-mirror, removable-vibrator, fixed-mirror structure. in which the two optical cavities are coupled by coupling a stronger control field and weak probe light with the same mechanical oscillator. Analysis and numerical results show that under the mechanism with different parameters, due to nonlinear effect of pressure, in the three-mode cavity optical mechanical system, there appear some interesting quantum coherent phenomena such as coherent perfect absorption, coherent perfect transmission and coherent perfect synthesis. When coherent perfect absorption occurs, the mutual conversion between input signal power full-field energies and oscillator vibration of internal coherence can be realized, and the law of conservation of energy is satisfied. When relaxation rate due to mechanical oscillator is very small, the coherent perfect transmission is completely transmitted from the system side of the input field to the other side in the case of no loss of energy. And mechanical relaxation rate of the oscillator approaches to zero in the middle, which can ensure that the perfect transmission of the detection field takes place on one side, and the field total reflection and coherent perfect synthesis happen on the other side of. In addition, we alsofind that the adjustment of coupling between cavity and cavity can change the intensity of the probe field of quantum coherent control thereby realizing that the output of the detection field is transformed between coherent perfect absorption and coherence transmission; through simple phase modulation the output direction and input direction of detection field for left cavity-right cavity can swap mutually. So, these dynamic controls in quantum information networks can be used to construct some optical devices with special functions, such as photon switch, photo router, photon exchange machine, etc.
      通信作者: 张永棠, gov211@163.com
    • 基金项目: 国家自然科学基金(批准号:61363047)、江西省自然科学基金(批准号:2014GJJ12255)和佛山市科技创新项目(批准号:2016AG100382)资助的课题.
      Corresponding author: Zhang Yong-Tang, gov211@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61363047), the Science and Technology Innovation Project of Jiangxi, China (Grant No. 2014GJJ12255), and the Science and Technology Innovation Project of Foshan, China (Grant No. 2016AG100382).
    [1]

    Aspelmeyer M, Kopparberg T J, Marquardt F 2014 Rep. Prog. Phys. 86 1391

    [2]

    Grblacher S, Hammerer K, Vanner M R 2009 Nat. Prod. Lett. 460 724

    [3]

    Chen X, Liu X W, Zhang K Y, Yuan C H, Zhang W P 2015 Acta Phys. Sin. 64 164211 (in Chinese) [陈雪, 刘晓威, 张可烨, 袁春华, 张卫平 2015 64 164211]

    [4]

    Andrews R W, Peterson R W, Purdy T P, Cicak K, Simmonds R W, Regal C A, Lehnert K W 2014 Nat. Phys. 10 321

    [5]

    Teufel J D, Li D, Allman M S 2011 Nat. Prod. Lett. 461 204

    [6]

    Verhagen E, Weis S 2012 Nat. Prod. Lett. 462 63

    [7]

    Alegre T P M, Chan J 2011 Nat. Prod. Lett. 461 69

    [8]

    Fiore V, Kuzyk M C 2011 Phys. Rev. Lett. 107 133601

    [9]

    Teufel J D, Donner T, Li D 2011 Nat. Prod. Lett. 461 359

    [10]

    Wang Y D, Clerk A A 2013 Phys. Rev. Lett. 109 253601

    [11]

    Dobrindt J M, Kippenberg T J 2010 Phys. Rev. Lett. 106 033901

    [12]

    Hill J T, Chan J 2012 Nat. Commun. 3 1196

    [13]

    Hu Q G, Dong X Y, Wang C F, Wang N, Chen W D 2015 Acta Phys. Sin. 64 034209 (in Chinese) [朱奇光, 董昕宇, 王春芳, 王宁, 陈卫东 2015 64 034209]

    [14]

    Ludwig M, Painter O 2012 Phys. Rev. Lett. 108 063601

    [15]

    Tian L 2013 Phys. Rev. Lett. 109 233602

    [16]

    Dong C, Fiore V, Kuzyk M C 2012 Sci. Prog. 334 1609

    [17]

    Qu K, Agarwal G S 2013 Phys. Rev. A 87 031802

    [18]

    Yan X B, Cui C L, Gu K H 2014 Opt. Express 22 4886

    [19]

    Joshi C, Larson J, Jonson M 2012 Phys. Rev. A 86 033805

    [20]

    Wang H, Sha W, Huang Z X, Wu X L, Shen J 2014 Acta Phys. Sin. 63 184210 (in Chinese) [王辉, 沙威, 黄志祥, 吴先良, 沈晶 2014 63 184210]

    [21]

    Agarwal G S, Huang S 2014 New J. Phys. 16 033023

    [22]

    Liu H, Cao S Y, Meng F, Lin B K, Fang Z J 2015 Acta Phys. Sin. 64 094204 (in Chinese) [刘欢, 曹士英, 孟飞, 林百科, 方占军 2015 64 094204]

    [23]

    Lu C P, Yuan C H, Zhang W P 2008 Acta Phys. Sin. 57 6976 (in Chinese) [鲁翠萍, 袁春华, 张卫平 2008 57 6976]

  • [1]

    Aspelmeyer M, Kopparberg T J, Marquardt F 2014 Rep. Prog. Phys. 86 1391

    [2]

    Grblacher S, Hammerer K, Vanner M R 2009 Nat. Prod. Lett. 460 724

    [3]

    Chen X, Liu X W, Zhang K Y, Yuan C H, Zhang W P 2015 Acta Phys. Sin. 64 164211 (in Chinese) [陈雪, 刘晓威, 张可烨, 袁春华, 张卫平 2015 64 164211]

    [4]

    Andrews R W, Peterson R W, Purdy T P, Cicak K, Simmonds R W, Regal C A, Lehnert K W 2014 Nat. Phys. 10 321

    [5]

    Teufel J D, Li D, Allman M S 2011 Nat. Prod. Lett. 461 204

    [6]

    Verhagen E, Weis S 2012 Nat. Prod. Lett. 462 63

    [7]

    Alegre T P M, Chan J 2011 Nat. Prod. Lett. 461 69

    [8]

    Fiore V, Kuzyk M C 2011 Phys. Rev. Lett. 107 133601

    [9]

    Teufel J D, Donner T, Li D 2011 Nat. Prod. Lett. 461 359

    [10]

    Wang Y D, Clerk A A 2013 Phys. Rev. Lett. 109 253601

    [11]

    Dobrindt J M, Kippenberg T J 2010 Phys. Rev. Lett. 106 033901

    [12]

    Hill J T, Chan J 2012 Nat. Commun. 3 1196

    [13]

    Hu Q G, Dong X Y, Wang C F, Wang N, Chen W D 2015 Acta Phys. Sin. 64 034209 (in Chinese) [朱奇光, 董昕宇, 王春芳, 王宁, 陈卫东 2015 64 034209]

    [14]

    Ludwig M, Painter O 2012 Phys. Rev. Lett. 108 063601

    [15]

    Tian L 2013 Phys. Rev. Lett. 109 233602

    [16]

    Dong C, Fiore V, Kuzyk M C 2012 Sci. Prog. 334 1609

    [17]

    Qu K, Agarwal G S 2013 Phys. Rev. A 87 031802

    [18]

    Yan X B, Cui C L, Gu K H 2014 Opt. Express 22 4886

    [19]

    Joshi C, Larson J, Jonson M 2012 Phys. Rev. A 86 033805

    [20]

    Wang H, Sha W, Huang Z X, Wu X L, Shen J 2014 Acta Phys. Sin. 63 184210 (in Chinese) [王辉, 沙威, 黄志祥, 吴先良, 沈晶 2014 63 184210]

    [21]

    Agarwal G S, Huang S 2014 New J. Phys. 16 033023

    [22]

    Liu H, Cao S Y, Meng F, Lin B K, Fang Z J 2015 Acta Phys. Sin. 64 094204 (in Chinese) [刘欢, 曹士英, 孟飞, 林百科, 方占军 2015 64 094204]

    [23]

    Lu C P, Yuan C H, Zhang W P 2008 Acta Phys. Sin. 57 6976 (in Chinese) [鲁翠萍, 袁春华, 张卫平 2008 57 6976]

  • [1] 李锦芳, 何东山, 王一平. 一维耦合腔晶格中磁子-光子拓扑相变和拓扑量子态的调制.  , 2024, 73(4): 044203. doi: 10.7498/aps.73.20231519
    [2] 郑智勇, 陈立杰, 向吕, 王鹤, 王一平. 一维超导微波腔晶格中反旋波效应对拓扑相变和拓扑量子态的调制.  , 2023, 72(24): 244204. doi: 10.7498/aps.72.20231321
    [3] 王伟, 王一平. 一维超导传输线腔晶格中的拓扑相变和拓扑量子态的调制.  , 2022, 71(19): 194203. doi: 10.7498/aps.71.20220675
    [4] 李靖, 刘运全. 基于相对论自由电子的量子物理.  , 2022, 71(23): 233302. doi: 10.7498/aps.71.20221289
    [5] 赵士平, 刘玉玺, 郑东宁. 新型超导量子比特及量子物理问题的研究.  , 2018, 67(22): 228501. doi: 10.7498/aps.67.20180845
    [6] 马亚云, 冯晋霞, 万振菊, 高英豪, 张宽收. 连续变量1.34 m量子纠缠态光场的实验制备.  , 2017, 66(24): 244205. doi: 10.7498/aps.66.244205
    [7] 卢道明, 邱昌东. 弱相干场原子-腔-光纤系统中的量子失协.  , 2014, 63(11): 110303. doi: 10.7498/aps.63.110303
    [8] 李锐奇, 卢道明. 原子与耦合腔相互作用系统中的量子失协.  , 2014, 63(3): 030301. doi: 10.7498/aps.63.030301
    [9] 王菊霞. 二能级原子与多模光场简并多光子共振相互作用系统中量子保真度的演化特性.  , 2014, 63(18): 184203. doi: 10.7498/aps.63.184203
    [10] 卢道明. 腔量子电动力学系统中耦合三原子的纠缠特性.  , 2014, 63(6): 060301. doi: 10.7498/aps.63.060301
    [11] 卢道明. 弱相干场耦合腔系统中的纠缠特性.  , 2013, 62(3): 030302. doi: 10.7498/aps.62.030302
    [12] 卢道明. 三参数双模压缩粒子数态的量子特性.  , 2012, 61(21): 210302. doi: 10.7498/aps.61.210302
    [13] 卢道明. 三能级原子与耦合腔相互作用系统中的纠缠特性.  , 2012, 61(3): 030301. doi: 10.7498/aps.61.030301
    [14] 卢道明. 三个耦合腔系统中的纠缠特性.  , 2012, 61(15): 150303. doi: 10.7498/aps.61.150303
    [15] 刘观辉, 裴丽, 宁提纲, 高嵩, 李晶, 张义军. 基于新型偏振稳定毫米波发生器的光载无线通信下行链路.  , 2012, 61(9): 094205. doi: 10.7498/aps.61.094205
    [16] 卢道明. 型和V型三能级原子与耦合腔相互作用系统中的纠缠特性.  , 2011, 60(12): 120303. doi: 10.7498/aps.60.120303
    [17] 卢道明. 原子与耦合腔相互作用系统中的纠缠特性.  , 2011, 60(9): 090302. doi: 10.7498/aps.60.090302
    [18] 卢道明. 腔外原子操作控制腔内原子的纠缠特性.  , 2010, 59(12): 8359-8364. doi: 10.7498/aps.59.8359
    [19] 张英杰, 夏云杰, 任廷琦, 杜秀梅, 刘玉玲. 反Jaynes-Cummings模型下纠缠相干光场量子特性的研究.  , 2009, 58(2): 722-728. doi: 10.7498/aps.58.722
    [20] 江金环, 王永龙, 李子平. 稳态光折变空间孤子传输的量子理论.  , 2004, 53(12): 4070-4074. doi: 10.7498/aps.53.4070
计量
  • 文章访问数:  6026
  • PDF下载量:  153
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-14
  • 修回日期:  2017-03-01
  • 刊出日期:  2017-05-05

/

返回文章
返回
Baidu
map