-
The tapping temperature and the cooling rate are the key parameters during the development process of chalcogenide glass. Based on the theory of heat conduction equation, a model for calculating the temperature distribution of cylindrical chalcogenide glass is established using the least square fitting method in this paper. The tapping temperature, the temperature distribution and the cooling rate are simulated by using the model. The simulation results are compared with experimental data. The results show that the glass temperature stays in a non-steady non-uniform distribution, the surface cooling is the fastest, and the temperature decreases exponentially with time when the glass is tapped off from the furnace; the temperature of glass rod from the center to the edge is approximately of parabola distribution; the crystallization is the most difficult when the glass is tapped off at 50100 ℃ higher than crystallization temperature and a surface heat exchange coefficient of 180 W m-2K-1. Under the guidance of the theoretical model the uniform and transparent chalcogenide glass with a diameter of 110 mm and height of 80 mm is obtained. The glass transmission spectrum range is 0.817 m. The 2 mm thick flat sheet has the average transmittance higher than 65% in a 812 m range.
[1] Liao Y B, Xu L, Yang F, Liu W Q, Liu D, Xu J, Ma Z Y, Chen K J 2010 Acta Phys. Sin. 59 6563 (in Chinese) [廖远宝、徐 岭、杨 菲、刘文强、刘 东、徐 骏、马忠元、陈坤基 2010 59 6563]
[2] Zhang T, Song Z T, Liu B, Liu W L, Feng S L,Chen B 2007 Chin. Phys. B 16 2475
[3] [4] [5] Valentina F K 1996 Glasses for Infrared Optics (New York: CRC Press) p77
[6] [7] Chen G R, Zhang X H 2004 Bull. Chin. Ceram. Soc. 23 3(in Chinese) [陈国荣、章向华 2004 硅酸盐通报 23 3]
[8] Petrovic A F, Lukic S R, Strbac D D 2004 J. Optoelectron. Adv. Mater. 6 1167
[9] [10] [11] Seznec V, Ma H L, Zhang X H, Nazabal V, Adam J L, Qiao X S, Fan X P 2006 Opt. Mater. 29 371
[12] Zhang Q, Chen Z J, Li Z X 2009 J. Eng. Thermophys. 30 1009 (in Chinese) [张 勤、陈泽敬、李志信 2009 工程热 30 1009]
[13] [14] Wang Z Y, Yang Y S, Tong W H, Li H Q, Hu Z Q 2006 Acta Phys. Sin. 55 1953 (in Chinese) [王珍玉、杨院生、童文辉、李会强、胡壮麒 2006 55 1953]
[15] [16] Wang M Z, Duan W T, Cao D X, Zheng J G, Jiang X Y, Li M Z, Tan J C, Yu H W, Jing F 2010 High Power Laser and Particle Beams 22 36 (in Chinese) [王明哲、段文涛、曹丁象、郑建刚、蒋新颖、李明中、谭吉春、於海武、景 峰 2010 强激光与粒子束 22 36]
[17] [18] [19] Yang H, Zhang Y K, He Y P 2010 Chin. J. Lasers 37 49 (in Chinese) [杨 浩、张引科、贺艳平 2010 中国激光 37 49]
[20] [21] Yang S M, Tao W Q 1998 Heat Transfer (Beijing: Higher Education Press) p26 (in Chinese) [杨世铭、陶文铨 1998 传热学 (北京:高等教育出版社) 第26页]
-
[1] Liao Y B, Xu L, Yang F, Liu W Q, Liu D, Xu J, Ma Z Y, Chen K J 2010 Acta Phys. Sin. 59 6563 (in Chinese) [廖远宝、徐 岭、杨 菲、刘文强、刘 东、徐 骏、马忠元、陈坤基 2010 59 6563]
[2] Zhang T, Song Z T, Liu B, Liu W L, Feng S L,Chen B 2007 Chin. Phys. B 16 2475
[3] [4] [5] Valentina F K 1996 Glasses for Infrared Optics (New York: CRC Press) p77
[6] [7] Chen G R, Zhang X H 2004 Bull. Chin. Ceram. Soc. 23 3(in Chinese) [陈国荣、章向华 2004 硅酸盐通报 23 3]
[8] Petrovic A F, Lukic S R, Strbac D D 2004 J. Optoelectron. Adv. Mater. 6 1167
[9] [10] [11] Seznec V, Ma H L, Zhang X H, Nazabal V, Adam J L, Qiao X S, Fan X P 2006 Opt. Mater. 29 371
[12] Zhang Q, Chen Z J, Li Z X 2009 J. Eng. Thermophys. 30 1009 (in Chinese) [张 勤、陈泽敬、李志信 2009 工程热 30 1009]
[13] [14] Wang Z Y, Yang Y S, Tong W H, Li H Q, Hu Z Q 2006 Acta Phys. Sin. 55 1953 (in Chinese) [王珍玉、杨院生、童文辉、李会强、胡壮麒 2006 55 1953]
[15] [16] Wang M Z, Duan W T, Cao D X, Zheng J G, Jiang X Y, Li M Z, Tan J C, Yu H W, Jing F 2010 High Power Laser and Particle Beams 22 36 (in Chinese) [王明哲、段文涛、曹丁象、郑建刚、蒋新颖、李明中、谭吉春、於海武、景 峰 2010 强激光与粒子束 22 36]
[17] [18] [19] Yang H, Zhang Y K, He Y P 2010 Chin. J. Lasers 37 49 (in Chinese) [杨 浩、张引科、贺艳平 2010 中国激光 37 49]
[20] [21] Yang S M, Tao W Q 1998 Heat Transfer (Beijing: Higher Education Press) p26 (in Chinese) [杨世铭、陶文铨 1998 传热学 (北京:高等教育出版社) 第26页]
计量
- 文章访问数: 6626
- PDF下载量: 743
- 被引次数: 0