搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

火灾烟雾颗粒532 nm光散射矩阵实验研究

张启兴 李耀东 邓小玖 张永明

引用本文:
Citation:

火灾烟雾颗粒532 nm光散射矩阵实验研究

张启兴, 李耀东, 邓小玖, 张永明

Experimental determination of scattering matrix of fire smoke particles at 532 nm

Zhang Qi-Xing, Li Yao-Dong, Deng Xiao-Jiu, Zhang Yong-Ming
PDF
导出引用
  • 基于自主研制的结合偏振调制和锁相检测技术的光散射实验装置,测量了两种典型火灾烟雾颗粒(棉绳阴燃烟雾和正庚烷池火烟雾)及超声雾化水滴颗粒的532 nm光散射矩阵元素随散射角的分布. 通过水滴颗粒测量结果与数值计算结果的比较验证了实验装置的可靠性. 对比分析了棉绳阴燃烟雾和正庚烷池火烟雾光散射矩阵元素随散射角的分布特征,讨论了该特征在颗粒区分上的应用. 研究了烟雾颗粒微观形貌特征对光散射矩阵的影响,发现可以利用Lorenz-Mie理论描述棉绳阴燃烟雾的光散射,表明其形貌为球形,并利用模拟退火拟合的方法得到了棉
    Based on polarization modulation and lock-in detection, an experimental apparatus is built to determine several important angular dependent scattering matrix elements at 532 nm. The apparatus is tested by water droplets through comparing measurement results with Mie calculations. Measurement results of scattering matrix elements and element ratios between smoke particles produced by smoldering cotton test fire and those produced from flaming n-heptane test fire are presented. We find that results of Mie calculations are able to describe the experimental data of smoldering cotton test fire smoke, which indicates that the particles generated by smoldering cotton test fire are mostly spherical in shape with considering the particle size relative to the wavelength. Using the optimization method, we estimate the refractive index (m=1.49+i0.01) and size distribution (lognormal distribution, g=2.335 and dg=0.17 m) of smoldering cotton test fire smoke. Contrarily, the experimental data of flaming n-heptane fire smoke cannot be described by Mie scattering, which is interpreted by the nonspherical, fractal aggregate morphology of the particulates.
    • 基金项目: 国家自然科学基金(批准号:50776084,51074147)和火灾科学国家重点实验室基金(批准号:HZ2009-KF08)资助的课题.
    [1]

    Zhu R 2010 Chin. Phys. B 19 127201

    [2]

    Xiong B T, Zhou B X, Bai J, Zheng Q, Liu Y B, Cai W M, Cai J 2008 Chin. Phys. B 17 3713

    [3]
    [4]
    [5]

    Volten H, Munoz O, Rol E, Haan J F, Vassen W, Hovenier J W 2001 J. Geophys. Res. 106 17375

    [6]
    [7]

    Munoz O, Moreno F, Guirado D, Ramos J L, Lopez A, Girela F, Jeronimo J M, Costillo L P, Bustamante I 2010 J. Quant. Spectrosc. Radiat. Transfer 111 187

    [8]

    Klusek C, Manickavasagam S, Meng M P 2003 J. Quant. Spectrosc. Radiat. Transfer 79 839

    [9]
    [10]

    Qiao L F, Zhang Y M, Xie Q Y, Fang J, Wang J J 2007 Acta Phys. Sin. 56 6736 (in Chinese) [乔利锋、张永明、谢启源、方 俊、王进军 2007 56 6736]

    [11]
    [12]

    Lei C X, Zhang H F, Liu H F 2009 Acta Phys. Sin. 58 7168 (in Chinese) [类成新、张化福、刘汉法 2009 58 7168]

    [13]
    [14]
    [15]

    Huang C J, Liu Y F, Wu Z S 2007 Acta Phys. Sin. 56 4068 (in Chinese) [黄朝军、刘亚锋、吴振森 2007 56 4068]

    [16]
    [17]

    Xie Q Y, Zhang H P, Wan Y T, Zhang Y M, Qiao L F 2007 J. Quant. Spectrosc. Radiat. Transfer 107 72

    [18]
    [19]

    Xie Q Y, Yuan H Y, Song L W, Zhang Y M 2007 Build. Environ. 42 640

    [20]

    Suo-Anttila J, Gill W, Gritzo L, Blake D 2005 Fire Mater. 29 91

    [21]
    [22]
    [23]

    Van de Hulst H C 1957 Light Scattering by Small Particles (New York: John Wiley) p47

    [24]

    Keller A, Loepfe M, Nebiker P, Pleisch R, Burtscher H 2006 Fire Saf. J. 41 266

    [25]
    [26]

    Zhang Q X, Qiao L F, Wang J J, Fang J, Zhang Y M 2009 Proc. SPIE 7511 75110M

    [27]
    [28]
    [29]

    Ma L, Kranendonk L, Cai W, Zhao Y, Baba J 2009 J. Aerosol Sci. 40 588

    [30]
    [31]

    Hull P, Shepherd I, Hunt A 2004 Appl. Opt. 43 3433

    [32]
    [33]

    European Committee for Standardization 2003 Fire Detection and Alarm Systems (Part 7) (London: IHS Press) p37

    [34]
    [35]

    Urban D, Griffin D, Ruff G, Cleary T, Yang J, Mulholland G, Yuan Z G 2005 Detecton of Smoke from Microgravity Fires (Warrendale: SAE International) p9

    [36]

    Shu X M, Fang J, Shen S F, Liu Y J, Yuan H Y, Fan W C 2006 Acta Phys. Sin. 55 4466 (in Chinese) [疏学明、方 俊、申世飞、刘勇进、袁宏永、范维澄 2006 55 4466]

    [37]
    [38]

    Levin E J T, McMeeking G R, Carrico C M, Mack L E, Kreidenweis S M, Wold C E, Moosmuller H, Arnott W P, Hao W M, Collett J L, Malm W C 2010 J. Geophys. Res. 115 D18210

    [39]
    [40]

    Loepfe M, Ryser P, Tompkin C, Wieser D 1997 Fire Saf. J. 29 185

    [41]
    [42]
    [43]

    Kyl V , Faeth G M, Farias T L, Carvalho M G 1995 Combust. Flame 100 621

    [44]

    Zhang Q, Deng X J, Zhang Q X, Li Y D, Zhang Y M 2010 Acta Phys. Sin. 59 7442 (in Chinese) [张 青、邓小玖、张启兴、李耀东、张永明 2010 59 7442]

    [45]
  • [1]

    Zhu R 2010 Chin. Phys. B 19 127201

    [2]

    Xiong B T, Zhou B X, Bai J, Zheng Q, Liu Y B, Cai W M, Cai J 2008 Chin. Phys. B 17 3713

    [3]
    [4]
    [5]

    Volten H, Munoz O, Rol E, Haan J F, Vassen W, Hovenier J W 2001 J. Geophys. Res. 106 17375

    [6]
    [7]

    Munoz O, Moreno F, Guirado D, Ramos J L, Lopez A, Girela F, Jeronimo J M, Costillo L P, Bustamante I 2010 J. Quant. Spectrosc. Radiat. Transfer 111 187

    [8]

    Klusek C, Manickavasagam S, Meng M P 2003 J. Quant. Spectrosc. Radiat. Transfer 79 839

    [9]
    [10]

    Qiao L F, Zhang Y M, Xie Q Y, Fang J, Wang J J 2007 Acta Phys. Sin. 56 6736 (in Chinese) [乔利锋、张永明、谢启源、方 俊、王进军 2007 56 6736]

    [11]
    [12]

    Lei C X, Zhang H F, Liu H F 2009 Acta Phys. Sin. 58 7168 (in Chinese) [类成新、张化福、刘汉法 2009 58 7168]

    [13]
    [14]
    [15]

    Huang C J, Liu Y F, Wu Z S 2007 Acta Phys. Sin. 56 4068 (in Chinese) [黄朝军、刘亚锋、吴振森 2007 56 4068]

    [16]
    [17]

    Xie Q Y, Zhang H P, Wan Y T, Zhang Y M, Qiao L F 2007 J. Quant. Spectrosc. Radiat. Transfer 107 72

    [18]
    [19]

    Xie Q Y, Yuan H Y, Song L W, Zhang Y M 2007 Build. Environ. 42 640

    [20]

    Suo-Anttila J, Gill W, Gritzo L, Blake D 2005 Fire Mater. 29 91

    [21]
    [22]
    [23]

    Van de Hulst H C 1957 Light Scattering by Small Particles (New York: John Wiley) p47

    [24]

    Keller A, Loepfe M, Nebiker P, Pleisch R, Burtscher H 2006 Fire Saf. J. 41 266

    [25]
    [26]

    Zhang Q X, Qiao L F, Wang J J, Fang J, Zhang Y M 2009 Proc. SPIE 7511 75110M

    [27]
    [28]
    [29]

    Ma L, Kranendonk L, Cai W, Zhao Y, Baba J 2009 J. Aerosol Sci. 40 588

    [30]
    [31]

    Hull P, Shepherd I, Hunt A 2004 Appl. Opt. 43 3433

    [32]
    [33]

    European Committee for Standardization 2003 Fire Detection and Alarm Systems (Part 7) (London: IHS Press) p37

    [34]
    [35]

    Urban D, Griffin D, Ruff G, Cleary T, Yang J, Mulholland G, Yuan Z G 2005 Detecton of Smoke from Microgravity Fires (Warrendale: SAE International) p9

    [36]

    Shu X M, Fang J, Shen S F, Liu Y J, Yuan H Y, Fan W C 2006 Acta Phys. Sin. 55 4466 (in Chinese) [疏学明、方 俊、申世飞、刘勇进、袁宏永、范维澄 2006 55 4466]

    [37]
    [38]

    Levin E J T, McMeeking G R, Carrico C M, Mack L E, Kreidenweis S M, Wold C E, Moosmuller H, Arnott W P, Hao W M, Collett J L, Malm W C 2010 J. Geophys. Res. 115 D18210

    [39]
    [40]

    Loepfe M, Ryser P, Tompkin C, Wieser D 1997 Fire Saf. J. 29 185

    [41]
    [42]
    [43]

    Kyl V , Faeth G M, Farias T L, Carvalho M G 1995 Combust. Flame 100 621

    [44]

    Zhang Q, Deng X J, Zhang Q X, Li Y D, Zhang Y M 2010 Acta Phys. Sin. 59 7442 (in Chinese) [张 青、邓小玖、张启兴、李耀东、张永明 2010 59 7442]

    [45]
  • [1] 蒋乐昕, 谢振龙, 郭泽虹, 丘伊宁, 陈溢杭. 基于准正则模式的全电介质超材料宽带反射器机理.  , 2023, 72(20): 204205. doi: 10.7498/aps.72.20230915
    [2] 张燕, 赵曰峰, 赵丽娜, 郑立仁, 高垣梅. 光折变晶体LiNbO3:Fe中的特殊散射现象.  , 2017, 66(8): 084206. doi: 10.7498/aps.66.084206
    [3] 孙贤明, 肖赛, 王海华, 万隆, 申晋. 高斯光束在双层云中传输的蒙特卡罗模拟.  , 2015, 64(18): 184204. doi: 10.7498/aps.64.184204
    [4] 姜玲, 张昌能, 丁勇, 莫立娥, 黄阳, 胡林华, 戴松元. 纳米TiO2颗粒/亚微米球多层结构薄膜内电荷传输性能研究.  , 2015, 64(1): 017301. doi: 10.7498/aps.64.017301
    [5] 张金碧, 丁蕾, 王颖萍, 郑海洋, 方黎. 利用近前向散射图样识别单粒子形状的理论研究.  , 2015, 64(5): 054202. doi: 10.7498/aps.64.054202
    [6] 苏丹, 窦秀明, 丁琨, 王海艳, 倪海桥, 牛智川, 孙宝权. 金纳米颗粒光散射提高InAs单量子点荧光提取效率.  , 2015, 64(23): 235201. doi: 10.7498/aps.64.235201
    [7] 孙贤明, 王海华, 申晋, 王淑君. 随机取向双层椭球粒子偏振散射特性研究.  , 2011, 60(11): 114216. doi: 10.7498/aps.60.114216
    [8] 李艳辉, 吴振森, 宫彦军, 张耿, 王明军. 目标激光脉冲一维距离成像研究.  , 2010, 59(10): 6988-6993. doi: 10.7498/aps.59.6988
    [9] 宫彦军, 吴振森. 转动圆柱和圆锥的激光距离多普勒像分析模型.  , 2009, 58(9): 6227-6235. doi: 10.7498/aps.58.6227
    [10] 陈华, 杜磊, 庄奕琪, 牛文娟. Rashba自旋轨道耦合作用下电荷流散粒噪声与自旋极化的关系研究.  , 2009, 58(8): 5685-5692. doi: 10.7498/aps.58.5685
    [11] 孙贤明, 申晋, 魏佩瑜. 含有密集随机分布内核的椭球粒子光散射特性研究.  , 2009, 58(9): 6222-6226. doi: 10.7498/aps.58.6222
    [12] 肖贤波, 李小毛, 周光辉. 电磁波辐照下量子线的电子自旋极化输运性质.  , 2007, 56(3): 1649-1654. doi: 10.7498/aps.56.1649
    [13] 黄朝军, 刘亚锋, 吴振森. 烟尘簇团粒子光学截面和散射矩阵的数值计算.  , 2007, 56(7): 4068-4074. doi: 10.7498/aps.56.4068
    [14] 疏学明, 方 俊, 申世飞, 刘勇进, 袁宏永, 范维澄. 火灾烟雾颗粒凝并分形特性研究.  , 2006, 55(9): 4466-4471. doi: 10.7498/aps.55.4466
    [15] 孙贤明, 韩一平. 冰水混合云对可见光的吸收和散射特性.  , 2006, 55(2): 682-687. doi: 10.7498/aps.55.682
    [16] 韩一平. 一种求解任意入射波束的波束因子的方法.  , 2005, 54(11): 5139-5143. doi: 10.7498/aps.54.5139
    [17] 戴振宏, 倪 军. 基于格林函数的多终端量子链状体系电子输运性质的研究.  , 2005, 54(7): 3342-3345. doi: 10.7498/aps.54.3342
    [18] 吴 鹏, 韩一平, 刘德芳. 大粒子对高斯波束散射的数值模拟.  , 2005, 54(6): 2676-2679. doi: 10.7498/aps.54.2676
    [19] 亓东平, 刘德丽, 滕树云, 张宁玉, 程传福. 随机散射屏的原子力显微镜形貌分析及其光散射特性.  , 2000, 49(7): 1260-1266. doi: 10.7498/aps.49.1260
    [20] 侯伯宇. 散射矩阵的角分布不变变换群.  , 1964, 20(7): 691-695. doi: 10.7498/aps.20.691
计量
  • 文章访问数:  7867
  • PDF下载量:  1294
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-11-02
  • 修回日期:  2011-01-10
  • 刊出日期:  2011-04-05

/

返回文章
返回
Baidu
map