-
In recent years, the application of machine learning in materials science has significantly accelerated the discovery of new materials. In particular, when combined with traditional methods such as first-principles calculations, machine learning models have proven effective in screening potential high-performance materials from existing databases. However, these approaches are largely constrained within known chemical spaces and struggle to enable the active design of entirely novel material structures. To overcome this limitation, generative models have emerged as a promising tool for inverse material design, offering new avenues to explore unknown structural and property spaces. Although existing generative models have achieved initial progress in crystal structure generation, achieving property-guided material generation remains a significant challenge. This review first introduces representative generative models recently applied to materials generation, including CDVAE, MatGAN, and MatterGen, and analyzes their fundamental capabilities and limitations in structural generation. We then focus on strategies for incorporating target properties into generative models to achieve property-directed structure generation. Specifically, we discuss four representative approaches: Con-CDVAE based on target property vectors, SCIGEN with integrated structural constraints and guidance mechanisms, a fine-tuned version of MatterGen leveraging adapter-based property control, and a CDVAE latent space optimization strategy guided by property objectives. Finally, we summarize the key challenges faced by property-guided generative models and provide an outlook on future research directions. This review aims to offer researchers a systematic reference and inspiration for advancing property-driven generative approaches in material design. This work aims to provide researchers with a systematic reference and insight into the advancement of property-driven generative methods for materials design.
-
Keywords:
- machine learning /
- generative models /
- inverse design /
- property-guided
-
[1] Jiang X, Xue D, Bai Y, Wang W Y, Liu J, Yang M, Su Y 2025 Rev. Mater. Res. 1 100010
[2] Wu M, Zhang S, Ren J 2025 APL Mater. 13 020601
[3] Merchant A, Batzner S, Schoenholz S S, Aykol M, Cheon G, Cubuk E D 2023 Nature 624 80
[4] Butler K T, Davies D W, Cartwright H, Isayev O, Walsh A 2018 Nature 559 547
[5] Zhong M, Tran K, Min Y, Wang C, Wang Z, Dinh C T, De Luna P, Yu Z, Rasouli A S, Brodersen P, Sun S, Voznyy O, Tan C S, Askerka M, Che F, Liu M, Seifitokaldani A, Pang Y, Lo S C, Ip A, Ulissi Z, Sargent E H 2020 Nature 581 178
[6] Rao Z, Tung P Y, Xie R, Wei Y, Zhang H, Ferrari A, Klaver T P C, Körmann F, Sukumar P T, Kwiatkowski da Silva A, Chen Y, Li Z, Ponge D, Neugebauer J, Gutfleisch O, Bauer S, Raabe D 2022 Science 378 78
[7] Hellenbrandt M 2004 Crystallogr. Rev. 10 17
[8] Kirklin S, Saal J E, Meredig B, Thompson A, Doak J W, Aykol M, Rühl S, Wolverton C 2015 npj Comput. Mater. 1 1
[9] Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A 2013 APL Mater. 1 011002
[10] Haastrup S, Strange M, Pandey M, Deilmann T, Schmidt P S, Hinsche N F, Gjerding M N, Torelli D, Larsen P M, Riis-Jensen A C, Gath J, Jacobsen K W, Jørgen Mortensen J, Olsen T, Thygesen K S 2018 2D Mater. 5 042002
[11] Lu S, Zhou Q, Chen X, Song Z, Wang J 2022 Natl. Sci. Rev. 9 nwac111
[12] Kingma D P, Welling M 2019 Found. Trends Mach. Learn. 12 307
[13] Goodfellow I J, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y 2014 arXiv:1406.2661v1[stat.ML]
[14] Ho J, Jain A, Abbeel P 2020 arXiv:2006.11239v2[cs.LG]
[15] Stimper V, Liu D, Campbell A, Berenz V, Ryll L, Schölkopf B, Hernández-Lobato J M 2023 J. Open Source Softw. 8 5361
[16] Hoogeboom E, Gritsenko A A, Bastings J, Poole B, Berg R van den, Salimans T 2022 arXiv:2110.02037v2[cs.LG]
[17] Hong T, Chen T, Jin D, Zhu Y, Gao H, Zhao K, Zhang T, Ren W, Cao G 2025 npj Quantum Mater. 10 1
[18] Jin L, Du Z, Shu L, Cen Y, Xu Y, Mei Y, Zhang H 2025 Nat. Commun. 16 1210
[19] Sanchez-Lengeling B, Aspuru-Guzik A 2018 Science 361 360
[20] Zhang K, Chen T, Abbas Y, Jan S U, Zhou Z, Chu S, Xie G, Ullah S, Akram M Z, Zhang J, Xuan Y, Gong J R 2021 Matter 4 1054
[21] Manzoor A, Zhang Y, Aidhy D S 2021 Comput. Mater. Sci 198 110669
[22] Ye C Y, Weng H M, Wu Q S 2024 Comput. Mater. Today 1 100003
[23] Okabe R, Cheng M, Chotrattanapituk A, Hung N T, Fu X, Han B, Wang Y, Xie W, Cava R J, Jaakkola T S, Cheng Y, Li M 2024 arXiv:2407.04557v1[cond-mat.mtrl-sci]
[24] Ye C, Wang Y, Xie X, Zhu T, Liu J, He Y, Zhang L, Zhang J, Fang Z, Wang L, Liu Z, Weng H, Wu Q 2025 arXiv:2505.00076v1[cond-mat.mtrl-sci]
[25] Zeni C, Pinsler R, Zügner D, Fowler A, Horton M, Fu X, Wang Z, Shysheya A, Crabbé J, Ueda S, Sordillo R, Sun L, Smith J, Nguyen B, Schulz H, Lewis S, Huang C W, Lu Z, Zhou Y, Yang H, Hao H, Li J, Yang C, Li W, Tomioka R, Xie T 2025 Nature 639 624
[26] Song Z, Fan L, Lu S, Ling C, Zhou Q, Wang J 2025 Nat. Commun. 16 1053
[27] Chen X, Lu S, Chen Q, Zhou Q, Wang J 2024 Nat. Commun. 15 5391
[28] Choudhary K 2024 arXiv:2405.03680v2[cond-mat.mtrl-sci]
[29] Lu S, Zhou Q, Guo Y, Wang J 2022 Chem 8 769
[30] Xie T, Fu X, Ganea O E, Barzilay R, Jaakkola T 2021 arXiv:2110.06197v3[cs.LG]
[31] Dan Y, Zhao Y, Li X, Li S, Hu M, Hu J 2020 npj Comput. Mater. 6 1
[32] Kingma D P, Welling M 2022 arXiv:1312.6114v11[stat.ML]
[33] Song Y, Ermon S 2019 Proceedings of the 32nd Annual Conference on Neural Information Processing Systems Vancouver, Canada, December 8-14, 2019 p11895
[34] Lemons D S, Gythiel A 1997 Am. J. Phys. 65 1079
[35] Chen S, Ge C, Zhang S, Sun P, Luo P 2025 arXiv:2504.07963v1[cs.CV]
[36] Shi C, Xu M, Zhu Z, Zhang W, Zhang M, Tang J 2020 arXiv:2001.09382v2[cs.LG]
[37] Xu M, Yu L, Song Y, Shi C, Ermon S, Tang J 2022 arXiv:2203.02923v1[cs.LG]
[38] Castelli I E, Landis D D, Thygesen K S, Dahl S, Chorkendorff I, Jaramillo T F, Jacobsen K W 2012 Energy Environ. Sci. 5 9034
[39] Pickard C J https://archive.materialscloud.org/record/2020.0026/v1[2024-04-20]
[40] Ren Z, Tian S I P, Noh J, Oviedo F, Xing G, Li J, Liang Q, Zhu R, Aberle A G, Sun S, Wang X, Liu Y, Li Q, Jayavelu S, Hippalgaonkar K, Jung Y, Buonassisi T 2022 Matter 5 314
[41] Court C J, Yildirim B, Jain A, Cole J M 2020 J. Chem. Inf. Model. 60 4518
[42] Gebauer N W A, Gastegger M, Schütt K T 2020 arXiv:1906.00957v3[stat.ML]
[43] Davies D W, Butler K T, Jackson A J, Skelton J M, Morita K, Walsh A 2019 J. Open Source Softw. 4 1361
[44] Xu M, Luo S, Bengio Y, Peng J, Tang J 2021 arXiv:2102.10240v3[cs.LG]
[45] Ganea O E, Pattanaik L, Coley C W, Barzilay R, Jensen K F, Green W H, Jaakkola T S 2021 arXiv:2106.07802v1[physics.chem-ph]
[46] Zhang H, Georgescu A B, Yerramilli S, Karpovich C, Apley D W, Olivetti E A, Rondinelli J M, Chen W 2025 arXiv:2412.17283v2[cond-mat.mtrl-sci]
[47] Murphy L R, Meek T L, Allred A L, Allen L C 2000 J. Phys. Chem. A 104 5867
[48] Sessa F, Rahm M 2022 J. Phys. Chem. A 126 5472
[49] Arjovsky M, Chintala S, Bottou L 2017 arXiv:1701.07875v3[stat.ML]
[50] Maaten L van der, Hinton G 2008 J. Mach. Learn. Res. 9 2579
[51] Green M L, Choi C L, Hattrick-Simpers J R, Joshi A M, Takeuchi I, Barron S C, Campo E, Chiang T, Empedocles S, Gregoire J M, Kusne A G, Martin J, Mehta A, Persson K, Trautt Z, Van Duren J, Zakutayev A 2017 Appl. Phys. Rev. 4 011105
[52] Pickard C J, Needs R J 2011 J. Phys. Condens. Matter 23 053201
[53] Song Y, Sohl-Dickstein J, Kingma D P, Kumar A, Ermon S, Poole B 2021 arXiv:2011.13456v2[cs.LG]
[54] Schmidt J, Wang H C, Cerqueira T F T, Botti S, Marques M A L 2022 Sci. Data 9 64
[55] Jiao R, Huang W, Lin P, Han J, Chen P, Lu Y, Liu Y 2023 arXiv:2309.04475v2[cond-mat.mtrl-sci]
[56] Sultanov A, Crivello J C, Rebafka T, Sokolovska N 2023 J. Chem. Inf. Model. 63 6986
[57] Xie T, Grossman J C 2018 Phys. Rev. Lett. 120 145301
[58] Ward L, Agrawal A, Choudhary A, Wolverton C 2016 npj Comput. Mater. 2 1
[59] Han X Q, Wang X D, Xu M Y, Feng Z, Yao B W, Guo P J, Gao Z F, Lu Z Y 2025 Chin. Phys. Lett. 42 027403
[60] Long T, Zhang Y, Zhang H 2024 arXiv:2409.19124v1[cond-mat.mtrl-sci]
[61] Chen L, Zhang W, Nie Z, Li S, Pan F 2021 J. Mater. Inform. 1 N/A
[62] Chen Y, Wang X, Deng X, Liu Y, Chen X, Zhang Y, Wang L, Xiao H 2024 arXiv:2408.07608v1[cond-mat.mtrl-sci]
[63] New A, Pekala M, Pogue E A, Le N Q, Domenico J, Piatko C D, Stiles C D 2023 arXiv:2309.12323v1[cond-mat.mtrl-sci]
[64] Banik S, Dhabal D, Chan H, Manna S, Cherukara M, Molinero V, Sankaranarayanan S K R S 2023 npj Comput. Mater. 9 1
[65] Cao Z, Luo X, Lv J, Wang L 2024 arXiv:2403.15734v2[cond-mat.mtrl-sci]
[66] Yang S, Cho K, Merchant A, Abbeel P, Schuurmans D, Mordatch I, Cubuk E D 2024 arXiv:2311.09235v2[cs.LG]
[67] Jiao R, Huang W, Liu Y, Zhao D, Liu Y 2024 arXiv:2402.03992v2[cs.LG]
[68] Tsai W F, Fang C, Yao H, Hu J 2015 New J. Phys. 17 055016
[69] Ho J, Salimans T 2022 arXiv:2207.12598v1[cs.LG]
[70] Zhang L, Rao A, Agrawala M 2023 arXiv:2302.05543v3[cs.CV]
[71] Shuaibi M, Kolluru A, Das A, Grover A, Sriram A, Ulissi Z, Zitnick C L 2021 arXiv:2106.09575v1[cs.LG]
[72] Guo Z, Zhang C, Yu W, Herr J, Wiest O, Jiang M, Chawla N V 2021 arXiv:2102.07916v1[cs.LG]
[73] Ryan K, Lengyel J, Shatruk M 2018 J. Am. Chem. Soc. 140 10158
[74] Chenebuah E T, Nganbe M, Tchagang A B 2024 npj Comput. Mater. 10 198
[75] Fung V, Zhang J, Juarez E, Sumpter B G 2021 npj Comput. Mater. 7 1
[76] Varol Altay E, Alatas B 2020 Artif. Intell. Rev. 53 1373
[77] Butler K T, Choudhary K, Csanyi G, Ganose A M, Kalinin S V, Morgan D 2024 npj Comput. Mater. 10 1
[78] Wu Y, Li X, Guo R, Xu R, Ju M G, Wang J 2025 Natl. Sci. Rev 12 nwaf081
[79] Song Z, Lu S, Ju M, Zhou Q, Wang J 2025 Nat. Commun. 16 6530
[80] Seko A, Hayashi H, Tanaka I 2018 J. Chem. Phys. 148 241719
Metrics
- Abstract views: 73
- PDF Downloads: 2
- Cited By: 0