Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Target-property-guided material generation: towards on-demand inverse design of materials

LIU Zhanghe CHEN Xinyu ZHOU Qionghua WANG Jinlan

Citation:

Target-property-guided material generation: towards on-demand inverse design of materials

LIU Zhanghe, CHEN Xinyu, ZHOU Qionghua, WANG Jinlan
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • In recent years, the application of machine learning in materials science has significantly accelerated the discovery of new materials. In particular, when combined with traditional methods such as first-principles calculations, machine learning models have proven effective in screening potential high-performance materials from existing databases. However, these approaches are largely constrained within known chemical spaces and struggle to enable the active design of entirely novel material structures. To overcome this limitation, generative models have emerged as a promising tool for inverse material design, offering new avenues to explore unknown structural and property spaces. Although existing generative models have achieved initial progress in crystal structure generation, achieving property-guided material generation remains a significant challenge. This review first introduces representative generative models recently applied to materials generation, including CDVAE, MatGAN, and MatterGen, and analyzes their fundamental capabilities and limitations in structural generation. We then focus on strategies for incorporating target properties into generative models to achieve property-directed structure generation. Specifically, we discuss four representative approaches: Con-CDVAE based on target property vectors, SCIGEN with integrated structural constraints and guidance mechanisms, a fine-tuned version of MatterGen leveraging adapter-based property control, and a CDVAE latent space optimization strategy guided by property objectives. Finally, we summarize the key challenges faced by property-guided generative models and provide an outlook on future research directions. This review aims to offer researchers a systematic reference and inspiration for advancing property-driven generative approaches in material design. This work aims to provide researchers with a systematic reference and insight into the advancement of property-driven generative methods for materials design.
  • [1]

    Jiang X, Xue D, Bai Y, Wang W Y, Liu J, Yang M, Su Y 2025 Rev. Mater. Res. 1 100010

    [2]

    Wu M, Zhang S, Ren J 2025 APL Mater. 13 020601

    [3]

    Merchant A, Batzner S, Schoenholz S S, Aykol M, Cheon G, Cubuk E D 2023 Nature 624 80

    [4]

    Butler K T, Davies D W, Cartwright H, Isayev O, Walsh A 2018 Nature 559 547

    [5]

    Zhong M, Tran K, Min Y, Wang C, Wang Z, Dinh C T, De Luna P, Yu Z, Rasouli A S, Brodersen P, Sun S, Voznyy O, Tan C S, Askerka M, Che F, Liu M, Seifitokaldani A, Pang Y, Lo S C, Ip A, Ulissi Z, Sargent E H 2020 Nature 581 178

    [6]

    Rao Z, Tung P Y, Xie R, Wei Y, Zhang H, Ferrari A, Klaver T P C, Körmann F, Sukumar P T, Kwiatkowski da Silva A, Chen Y, Li Z, Ponge D, Neugebauer J, Gutfleisch O, Bauer S, Raabe D 2022 Science 378 78

    [7]

    Hellenbrandt M 2004 Crystallogr. Rev. 10 17

    [8]

    Kirklin S, Saal J E, Meredig B, Thompson A, Doak J W, Aykol M, Rühl S, Wolverton C 2015 npj Comput. Mater. 1 1

    [9]

    Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A 2013 APL Mater. 1 011002

    [10]

    Haastrup S, Strange M, Pandey M, Deilmann T, Schmidt P S, Hinsche N F, Gjerding M N, Torelli D, Larsen P M, Riis-Jensen A C, Gath J, Jacobsen K W, Jørgen Mortensen J, Olsen T, Thygesen K S 2018 2D Mater. 5 042002

    [11]

    Lu S, Zhou Q, Chen X, Song Z, Wang J 2022 Natl. Sci. Rev. 9 nwac111

    [12]

    Kingma D P, Welling M 2019 Found. Trends Mach. Learn. 12 307

    [13]

    Goodfellow I J, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y 2014 arXiv:1406.2661v1[stat.ML]

    [14]

    Ho J, Jain A, Abbeel P 2020 arXiv:2006.11239v2[cs.LG]

    [15]

    Stimper V, Liu D, Campbell A, Berenz V, Ryll L, Schölkopf B, Hernández-Lobato J M 2023 J. Open Source Softw. 8 5361

    [16]

    Hoogeboom E, Gritsenko A A, Bastings J, Poole B, Berg R van den, Salimans T 2022 arXiv:2110.02037v2[cs.LG]

    [17]

    Hong T, Chen T, Jin D, Zhu Y, Gao H, Zhao K, Zhang T, Ren W, Cao G 2025 npj Quantum Mater. 10 1

    [18]

    Jin L, Du Z, Shu L, Cen Y, Xu Y, Mei Y, Zhang H 2025 Nat. Commun. 16 1210

    [19]

    Sanchez-Lengeling B, Aspuru-Guzik A 2018 Science 361 360

    [20]

    Zhang K, Chen T, Abbas Y, Jan S U, Zhou Z, Chu S, Xie G, Ullah S, Akram M Z, Zhang J, Xuan Y, Gong J R 2021 Matter 4 1054

    [21]

    Manzoor A, Zhang Y, Aidhy D S 2021 Comput. Mater. Sci 198 110669

    [22]

    Ye C Y, Weng H M, Wu Q S 2024 Comput. Mater. Today 1 100003

    [23]

    Okabe R, Cheng M, Chotrattanapituk A, Hung N T, Fu X, Han B, Wang Y, Xie W, Cava R J, Jaakkola T S, Cheng Y, Li M 2024 arXiv:2407.04557v1[cond-mat.mtrl-sci]

    [24]

    Ye C, Wang Y, Xie X, Zhu T, Liu J, He Y, Zhang L, Zhang J, Fang Z, Wang L, Liu Z, Weng H, Wu Q 2025 arXiv:2505.00076v1[cond-mat.mtrl-sci]

    [25]

    Zeni C, Pinsler R, Zügner D, Fowler A, Horton M, Fu X, Wang Z, Shysheya A, Crabbé J, Ueda S, Sordillo R, Sun L, Smith J, Nguyen B, Schulz H, Lewis S, Huang C W, Lu Z, Zhou Y, Yang H, Hao H, Li J, Yang C, Li W, Tomioka R, Xie T 2025 Nature 639 624

    [26]

    Song Z, Fan L, Lu S, Ling C, Zhou Q, Wang J 2025 Nat. Commun. 16 1053

    [27]

    Chen X, Lu S, Chen Q, Zhou Q, Wang J 2024 Nat. Commun. 15 5391

    [28]

    Choudhary K 2024 arXiv:2405.03680v2[cond-mat.mtrl-sci]

    [29]

    Lu S, Zhou Q, Guo Y, Wang J 2022 Chem 8 769

    [30]

    Xie T, Fu X, Ganea O E, Barzilay R, Jaakkola T 2021 arXiv:2110.06197v3[cs.LG]

    [31]

    Dan Y, Zhao Y, Li X, Li S, Hu M, Hu J 2020 npj Comput. Mater. 6 1

    [32]

    Kingma D P, Welling M 2022 arXiv:1312.6114v11[stat.ML]

    [33]

    Song Y, Ermon S 2019 Proceedings of the 32nd Annual Conference on Neural Information Processing Systems Vancouver, Canada, December 8-14, 2019 p11895

    [34]

    Lemons D S, Gythiel A 1997 Am. J. Phys. 65 1079

    [35]

    Chen S, Ge C, Zhang S, Sun P, Luo P 2025 arXiv:2504.07963v1[cs.CV]

    [36]

    Shi C, Xu M, Zhu Z, Zhang W, Zhang M, Tang J 2020 arXiv:2001.09382v2[cs.LG]

    [37]

    Xu M, Yu L, Song Y, Shi C, Ermon S, Tang J 2022 arXiv:2203.02923v1[cs.LG]

    [38]

    Castelli I E, Landis D D, Thygesen K S, Dahl S, Chorkendorff I, Jaramillo T F, Jacobsen K W 2012 Energy Environ. Sci. 5 9034

    [39]

    Pickard C J https://archive.materialscloud.org/record/2020.0026/v1[2024-04-20]

    [40]

    Ren Z, Tian S I P, Noh J, Oviedo F, Xing G, Li J, Liang Q, Zhu R, Aberle A G, Sun S, Wang X, Liu Y, Li Q, Jayavelu S, Hippalgaonkar K, Jung Y, Buonassisi T 2022 Matter 5 314

    [41]

    Court C J, Yildirim B, Jain A, Cole J M 2020 J. Chem. Inf. Model. 60 4518

    [42]

    Gebauer N W A, Gastegger M, Schütt K T 2020 arXiv:1906.00957v3[stat.ML]

    [43]

    Davies D W, Butler K T, Jackson A J, Skelton J M, Morita K, Walsh A 2019 J. Open Source Softw. 4 1361

    [44]

    Xu M, Luo S, Bengio Y, Peng J, Tang J 2021 arXiv:2102.10240v3[cs.LG]

    [45]

    Ganea O E, Pattanaik L, Coley C W, Barzilay R, Jensen K F, Green W H, Jaakkola T S 2021 arXiv:2106.07802v1[physics.chem-ph]

    [46]

    Zhang H, Georgescu A B, Yerramilli S, Karpovich C, Apley D W, Olivetti E A, Rondinelli J M, Chen W 2025 arXiv:2412.17283v2[cond-mat.mtrl-sci]

    [47]

    Murphy L R, Meek T L, Allred A L, Allen L C 2000 J. Phys. Chem. A 104 5867

    [48]

    Sessa F, Rahm M 2022 J. Phys. Chem. A 126 5472

    [49]

    Arjovsky M, Chintala S, Bottou L 2017 arXiv:1701.07875v3[stat.ML]

    [50]

    Maaten L van der, Hinton G 2008 J. Mach. Learn. Res. 9 2579

    [51]

    Green M L, Choi C L, Hattrick-Simpers J R, Joshi A M, Takeuchi I, Barron S C, Campo E, Chiang T, Empedocles S, Gregoire J M, Kusne A G, Martin J, Mehta A, Persson K, Trautt Z, Van Duren J, Zakutayev A 2017 Appl. Phys. Rev. 4 011105

    [52]

    Pickard C J, Needs R J 2011 J. Phys. Condens. Matter 23 053201

    [53]

    Song Y, Sohl-Dickstein J, Kingma D P, Kumar A, Ermon S, Poole B 2021 arXiv:2011.13456v2[cs.LG]

    [54]

    Schmidt J, Wang H C, Cerqueira T F T, Botti S, Marques M A L 2022 Sci. Data 9 64

    [55]

    Jiao R, Huang W, Lin P, Han J, Chen P, Lu Y, Liu Y 2023 arXiv:2309.04475v2[cond-mat.mtrl-sci]

    [56]

    Sultanov A, Crivello J C, Rebafka T, Sokolovska N 2023 J. Chem. Inf. Model. 63 6986

    [57]

    Xie T, Grossman J C 2018 Phys. Rev. Lett. 120 145301

    [58]

    Ward L, Agrawal A, Choudhary A, Wolverton C 2016 npj Comput. Mater. 2 1

    [59]

    Han X Q, Wang X D, Xu M Y, Feng Z, Yao B W, Guo P J, Gao Z F, Lu Z Y 2025 Chin. Phys. Lett. 42 027403

    [60]

    Long T, Zhang Y, Zhang H 2024 arXiv:2409.19124v1[cond-mat.mtrl-sci]

    [61]

    Chen L, Zhang W, Nie Z, Li S, Pan F 2021 J. Mater. Inform. 1 N/A

    [62]

    Chen Y, Wang X, Deng X, Liu Y, Chen X, Zhang Y, Wang L, Xiao H 2024 arXiv:2408.07608v1[cond-mat.mtrl-sci]

    [63]

    New A, Pekala M, Pogue E A, Le N Q, Domenico J, Piatko C D, Stiles C D 2023 arXiv:2309.12323v1[cond-mat.mtrl-sci]

    [64]

    Banik S, Dhabal D, Chan H, Manna S, Cherukara M, Molinero V, Sankaranarayanan S K R S 2023 npj Comput. Mater. 9 1

    [65]

    Cao Z, Luo X, Lv J, Wang L 2024 arXiv:2403.15734v2[cond-mat.mtrl-sci]

    [66]

    Yang S, Cho K, Merchant A, Abbeel P, Schuurmans D, Mordatch I, Cubuk E D 2024 arXiv:2311.09235v2[cs.LG]

    [67]

    Jiao R, Huang W, Liu Y, Zhao D, Liu Y 2024 arXiv:2402.03992v2[cs.LG]

    [68]

    Tsai W F, Fang C, Yao H, Hu J 2015 New J. Phys. 17 055016

    [69]

    Ho J, Salimans T 2022 arXiv:2207.12598v1[cs.LG]

    [70]

    Zhang L, Rao A, Agrawala M 2023 arXiv:2302.05543v3[cs.CV]

    [71]

    Shuaibi M, Kolluru A, Das A, Grover A, Sriram A, Ulissi Z, Zitnick C L 2021 arXiv:2106.09575v1[cs.LG]

    [72]

    Guo Z, Zhang C, Yu W, Herr J, Wiest O, Jiang M, Chawla N V 2021 arXiv:2102.07916v1[cs.LG]

    [73]

    Ryan K, Lengyel J, Shatruk M 2018 J. Am. Chem. Soc. 140 10158

    [74]

    Chenebuah E T, Nganbe M, Tchagang A B 2024 npj Comput. Mater. 10 198

    [75]

    Fung V, Zhang J, Juarez E, Sumpter B G 2021 npj Comput. Mater. 7 1

    [76]

    Varol Altay E, Alatas B 2020 Artif. Intell. Rev. 53 1373

    [77]

    Butler K T, Choudhary K, Csanyi G, Ganose A M, Kalinin S V, Morgan D 2024 npj Comput. Mater. 10 1

    [78]

    Wu Y, Li X, Guo R, Xu R, Ju M G, Wang J 2025 Natl. Sci. Rev 12 nwaf081

    [79]

    Song Z, Lu S, Ju M, Zhou Q, Wang J 2025 Nat. Commun. 16 6530

    [80]

    Seko A, Hayashi H, Tanaka I 2018 J. Chem. Phys. 148 241719

  • [1] WANG Yue, YE Hanhan, XIONG Wei, WANG Xianhua, SHI Hailiang, LI Chao, CHENG Chen, WU Shichao. A spectral feature enhancement-driven machine learning method for cloud detection using ground-based infrared hyperspectral data. Acta Physica Sinica, doi: 10.7498/aps.74.20250982
    [2] GUO Yan, LYU Heng, DING Chunling, YUAN Chenzhi, JIN Ruibo. Machine learning identification of fractional-order vortex beam diffraction process. Acta Physica Sinica, doi: 10.7498/aps.74.20241458
    [3] ZHANG Tong, WANG Jiahao, TIAN Shuai, SUN Xuran, LI Ri. Machine learning-based study of dynamic shrinkage behavior during solidification of castings. Acta Physica Sinica, doi: 10.7498/aps.74.20241581
    [4] WANG Peng, MAIMAITINIYAZI Maimaitiabudula. Quantum dynamics of machine learning. Acta Physica Sinica, doi: 10.7498/aps.74.20240999
    [5] LIANG chen, LU shaoyu, HUANG dong, CHEN xin, FENG yan. All information of global properties in dusty plasmas from individual particle dynamics using machine learning. Acta Physica Sinica, doi: 10.7498/aps.74.20251129
    [6] QIN Chenglong, ZHAO Liang, JIANG Gang. Machine learning model predicted thermodynamic stability of rare earth compounds. Acta Physica Sinica, doi: 10.7498/aps.74.20250362
    [7] Zhang Xu, Ding Jin-Min, Hou Chen-Yang, Zhao Yi-Ming, Liu Hong-Wei, Liang Sheng. Machine learning based laser homogenization method. Acta Physica Sinica, doi: 10.7498/aps.73.20240747
    [8] Zhang Jia-Hui. Machine learning for in silico protein research. Acta Physica Sinica, doi: 10.7498/aps.73.20231618
    [9] Ju Xue-Wei, Zhang Lin-Feng, Huang Feng, Zhu Guo-Feng, Li Shu-Jin, Chen Yan-Qing, Wang Jia-Xun, Zhong Shun-Cong, Chen Ying, Wang Xiang-Feng. Reverse design and optimization of digital terahertz bandpass filters. Acta Physica Sinica, doi: 10.7498/aps.73.20231584
    [10] Guo Wei-Chen, Ai Bao-Quan, He Liang. Reveal flocking phase transition of self-propelled active particles by machine learning regression uncertainty. Acta Physica Sinica, doi: 10.7498/aps.72.20230896
    [11] Liu Ye, Niu He-Ran, Li Bing-Bing, Ma Xin-Hua, Cui Shu-Wang. Application of machine learning in cosmic ray particle identification. Acta Physica Sinica, doi: 10.7498/aps.72.20230334
    [12] Guan Xing-Yue, Huang Heng-Yan, Peng Hua-Qi, Liu Yan-Hang, Li Wen-Fei, Wang Wei. Machine learning in molecular simulations of biomolecules. Acta Physica Sinica, doi: 10.7498/aps.72.20231624
    [13] Zhang Yi-Yi, Wei Xue-Ling, Nong Jie, Ma Han-Si, Ye Zi-Yang, Xu Wen-Jie, Zhang Zhen-Rong, Yang Jun-Bo. Ultra-compact In2Se3 tunable power splitter based on direct binary search algorithm. Acta Physica Sinica, doi: 10.7498/aps.72.20230459
    [14] Yang Jian-Yu, Xi Kun, Zhu Li-Zhe. Transition state searching for complex biomolecules: Algorithms and machine learning. Acta Physica Sinica, doi: 10.7498/aps.72.20231319
    [15] Zhang Yi-Fan, Ren Wei, Wang Wei-Li, Ding Shu-Jian, Li Nan, Chang Liang, Zhou Qian. Machine learning combined with solid solution strengthening model for predicting hardness of high entropy alloys. Acta Physica Sinica, doi: 10.7498/aps.72.20230646
    [16] Ke Hang, Li Pei-Li, Shi Wei-Hua. Two-dimensional photonic crystal waveguide 1×5 beam splitter reversely designed by downhill-simplex algorithm. Acta Physica Sinica, doi: 10.7498/aps.71.20220328
    [17] Chen Jiang-Zhi, Yang Chen-Wen, Ren Jie. Machine learning based on wave and diffusion physical systems. Acta Physica Sinica, doi: 10.7498/aps.70.20210879
    [18] Wang Zhi-Peng, Wang Bing-Zhong, Liu Jin-Pin, Wang Ren. Inverse design method of microscatterer array for realizing scattering field intensity shaping. Acta Physica Sinica, doi: 10.7498/aps.70.20200825
    [19] Lin Jian, Ye Meng, Zhu Jia-Wei, Li Xiao-Peng. Machine learning assisted quantum adiabatic algorithm design. Acta Physica Sinica, doi: 10.7498/aps.70.20210831
    [20] Yang Zi-Xin, Gao Zhang-Ran, Sun Xiao-Fan, Cai Hong-Ling, Zhang Feng-Ming, Wu Xiao-Shan. High critical transition temperature of lead-based perovskite ferroelectric crystals: A machine learning study. Acta Physica Sinica, doi: 10.7498/aps.68.20190942
Metrics
  • Abstract views:  73
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Available Online:  11 October 2025
  • /

    返回文章
    返回
    Baidu
    map