-
Currently, it is a great challenge to accurately diagnose global properties of dusty plasmas from limited data. Based on machine learning, a novel diagnostic of various global properties in dusty plasma experiments is developed from individual particle dynamics. It is found that, for both two-dimensional (2D) dusty plasma simulations and experiments, the global properties of the screening parameters κ and the coupling parameter Γ can be accurately determined purely from the position fluctuations of individual particles. Hundreds of independent Langevin dynamical simulations are performed with various specified κ and Γ values, leading to abundant individual particle position fluctuation data, which can be used for training, validating, and testing various convolutional neural network (CNN) models. To confirm the feasibility of this diagnostic, three different CNN models are designed to determine the κ value. For the simulation data, all these CNN models have excellent performance in determining the κ value, i.e., the averaged determined κ value is nearly the same as the specified κ value. For the experiment data, the distributions of the determined κ values always exhibit one prominent peak, whose locations well agree with the determined κ value from the widely accepted phonon spectra fitting method. Furthermore, this diagnostic method is further developed to determine the κ and Γ values simultaneously, with the satisfactory outcome using the input 2D dusty plasma data from both simulations and experiments. The excellent performance of the CNN models developed here clearly indicates that, using machine learning, all information of global properties of 2D dusty plasmas can be obtained purely from individual particle dynamics.
-
Keywords:
- Machine learning /
- Convolutional neural network /
- Dusty plasma /
- Diagnositc
-
[1] Pathria R K, Beale P D 2021 Statistical Mechanics (London:Academic)
[2] Feng Y, Goree J, Liu B 2007 Rev. Sci. Instrum. 78 053704
[3] Feng Y, Goree J, Liu B 2011 Rev. Sci. Instrum. 82 053707
[4] He Y F, Ai B Q, Dai C X, Song C, Wang R Q, Sun W T, Liu F C, Feng Y 2020 Phys. Rev. Lett. 124 075001
[5] Beckers J, Berndt J, Block D, Bonitz M, Bruggeman P J, Couëdel L, Delzanno G L, Feng Y, Gopalakrishnan R, Greiner F, Hartmann P, Horányi M, Kersten H, Knapek C A, Konopka U, Kortshagen U, Kostadinova E G, Kovačević E, Krasheninnikov S I, Mann I, Mariotti D, Matthews L S, Melzer A, Mikikian M, Nosenko V, Pustylnik M Y, Ratynskaia S, Sankaran R M, Schneider V, Thimsen E J, Thomas E, Thomas H M, Tolias P, van de Kerkhof M 2023 Phys. Plasmas 30 120601
[6] Goree J 1994 Plasma Sources Sci. Technol. 3 400
[7] Feng Y, Goree J, Liu B 2008 Phys. Rev. Lett. 100 205007
[8] Feng Y, Goree J, Liu B 2010 Phys. Rev. Lett. 105 025002
[9] Lu S, Huang D, Feng Y 2021 Phys. Rev. E 103 063214
[10] Huang D, Lu S, Shi X Q, Goree J, Feng Y 2021 Phys. Rev. E 104 035207
[11] Konopka U, Morfill G, Ratke L 2000 Phys. Rev. Lett. 84 891
[12] Ichimaru S 1982 Rev. Mod. Phys. 54 1017
[13] Khrapak S, Couëdel L 2020 Phys. Rev. E 102 033207
[14] Bajaj P, Khrapak S, Yaroshenko V, Schwabe M 2022 Phys. Rev. E 105 025202
[15] Nunomura S, Goree J, Hu S, Wang X, Bhattacharjee A, Avinash K 2002 Phys. Rev. Lett. 89 035001
[16] Nunomura S, Zhdanov S, Morfill G E, Goree J 2003 Phys. Rev. E 68 026407
[17] Nosenko V, Goree J 2004 Phys. Rev. Lett. 93 155004
[18] Melzer A, Homann A, Piel A 1996 Phys. Rev. E 53 2757
[19] Zhang S, Wang S, Liu X, Wang X, Liu F, He Y F 2025 Acta Phys. Sin. 74 075202(in Chinese)[张 顺欣,王硕,刘雪,王新占,刘富成,贺亚峰2025 74 075202]
[20] Tian M, Yao T Y, Cai Z M, Liu F C, He Y F 2024 Acta Phys. Sin. 73 115201(in Chinese)[田淼,姚 廷昱,才志民,刘富成,贺亚峰2024 73 115201]
[21] Huang Y F, Jia W Z, Zhang Y Y, Song Y H 2024 Acta Phys. Sin. 73 085202(in Chinese)[黄渝峰, 贾文柱,张莹莹,宋远红2024 73 085202]
[22] Kalman G J, Hartmann P, Donkó Z, Rosenberg M 2004 Phys. Rev. Lett. 92 065001
[23] Nosenko V, Goree J, Ma Z W, Piel A 2002 Phys. Rev. Lett. 88 135001
[24] Brunton S L, Noack B R, Koumoutsakos P 2020 Annu. Rev. Fluid Mech. 52 477
[25] Butler K T, Davies D W, Cartwright H, Isayev O, Walsh A 2018 Nature 559 547
[26] Degrave J, Felici F, Buchli J, Neunert M, Tracey B, Carpanese F, Ewalds T, Hafner R, Abdolmaleki A, de Las Casas D, et al. 2022 Nature 602 414
[27] Huang H, Nosenko V, Huang-Fu H X, Thomas H M, Du C R 2022 Phys. Plasmas 29 073702
[28] Huang H, Schwabe M, Du C R 2019 J. Imaging 5 36
[29] Wang Z, Xu J, Kovach Y E, Wolfe B T, Thomas E, Guo H, Foster J E, Shen H W 2020 Phys. Plasmas 27 033703
[30] Dormagen N, Klein M, Schmitz A S, Thoma M H, Schwarz M 2024 J. Imaging 10 40
[31] Ding Z, Yao J, Wang Y, Yuan C, Zhou Z, Kudryavtsev A A, Gao R, Jia J 2021 Plasma Sci. Technol. 23 095403
[32] Yu W, Cho J, Burton J C 2022 Phys. Rev. E 106 035303
[33] Liang C, Huang D, Lu S, Feng Y 2023 Phys. Rev. Res. 5 033086
[34] Liang C, Huang D, Lu S, Feng Y 2024 Phys. Plasmas 31 113702
[35] Liu B, Avinash K, Goree J 2003 Phys. Rev. Lett. 91 255003
[36] Feng Y, Liu B, Goree J 2008 Phys. Rev. E 78 026415
[37] LeCun Y, Bengio Y, Hinton G 2015 Nature 521 436
[38] Kingma D P, Ba J 2014 arXiv:1412.6980
Metrics
- Abstract views: 83
- PDF Downloads: 2
- Cited By: 0